Introduction to Surface and Superlattice Excitations

Introduction to Surface and Superlattice Excitations

Author: Michael G. Cottam

Publisher: CRC Press

Published: 2019-05-07

Total Pages: 593

ISBN-13: 0429525710

DOWNLOAD EBOOK

Cottam and Tilley provide an introduction to the properties of wave-like excitations associated with surfaces and interfaces. The emphasis is on acoustic, optic and magnetic excitations, and apart from one section on liquid surfaces, the text concentrates on solids. The important topic of superlattices is also discussed, in which the different kind


Introduction to Surface and Superlattice Excitations

Introduction to Surface and Superlattice Excitations

Author: Michael G. Cottam

Publisher: Cambridge University Press

Published: 1989-04-06

Total Pages: 345

ISBN-13: 0521321549

DOWNLOAD EBOOK

Cottam and Tilley provide an introduction to the properties of wave-like excitations associated with surfaces and interfaces. The emphasis is on acoustic, optic and magnetic excitations, and, apart from one section on liquid surfaces, the text concentrates on solids. The important topic of superlattices is also discussed, in which the different kinds of excitation are considered from a unified point of view. Throughout the book the authors are careful to relate theory and experiment and all of the most important experimental techniques are described. The theoretical treatment assumes only a knowledge of undergraduate physics, except for Green function methods that are used in a few sections; these methods are developed in an appendix. The book also contains extensive references to enable the reader to consult the research and review literature, and problems are provided in each of the main chapters to allow the reader to develop topics presented in the text.


Handbook of Thin Films

Handbook of Thin Films

Author: Hari Singh Nalwa

Publisher: Elsevier

Published: 2001-11-17

Total Pages: 3436

ISBN-13: 0080533248

DOWNLOAD EBOOK

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.


Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices

Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices

Author: M G Cottam

Publisher: World Scientific

Published: 1994-03-28

Total Pages: 475

ISBN-13: 981450548X

DOWNLOAD EBOOK

In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.


Light Scattering in Semiconductor Structures and Superlattices

Light Scattering in Semiconductor Structures and Superlattices

Author: D.J. Lockwood

Publisher: Springer

Published: 2013-12-20

Total Pages: 592

ISBN-13: 1489936955

DOWNLOAD EBOOK

Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.


Magnonics

Magnonics

Author: Abdellatif Akjouj

Publisher: Elsevier

Published: 2019-01-09

Total Pages: 274

ISBN-13: 0128133678

DOWNLOAD EBOOK

Magnonics: Interface Transmission Tutorial Book Series provides up-to-date and concise summaries of the present knowledge of interface transmission science. The series' volumes foster the exchange of ideas among scientists interested in different aspects of interface transmission, with each release designed as a text, a reference, and a source. The series serves as an introduction to advanced graduate students, researchers and scientists with little acquaintance with the subject, and is also useful in keeping specialists informed about general progress in the field. A detailed description of mathematical languages is provided in an appendix, enabling readers to find composite system linear transmission properties. All scientists who contribute to these volume have worked in interface transmission in composite systems over many years, providing a thorough and comprehensive understanding of magnonics. - Offers a unique approach to magnonics from an interfacial transmission point-of-view - Teaches the modern physics of interface transmission, and in particular, magnonics through composite systems - Authored and edited by world-leading experts on Interface Transmission


Nanophotonics

Nanophotonics

Author: Arthur McGurn

Publisher: Springer

Published: 2018-04-27

Total Pages: 567

ISBN-13: 3319770721

DOWNLOAD EBOOK

This book gives a readable introduction to the important, rapidly developing, field of nanophotonics. It provides a quick understanding of the basic elements of the field, allowing students and newcomers to progress rapidly to the frontiers of their interests. Topics include: The basic mathematical techniques needed for the study of the materials of nanophotonic technology; photonic crystals and their applications as laser resonators, waveguides, and circuits of waveguides; the application of photonic crystals technology in the design of optical diodes and transistors; the basic properties needed for the design and understanding of new types of engineered materials known as metamaterials; and a consideration of how and why these engineered materials have been formulated in the lab, as well as their applications as negative refractive index materials, as perfect lens, as cloaking devices, and their effects on Cherenkov and other types of radiation. Additionally, the book introduces the new field of plasmonics and reviews its important features. The role of plasmon-polaritons in the scattering and transmission of light by rough surfaces and the enhanced transmission of light by plasmon-polariton supporting surfaces is addressed. The important problems of subwavelength resolution are treated with discussions of applications in a number of scientific fields. The basic principles of near-field optical microscopy are presented with a number of important applications. The basics of atomic cavity physics, photonic entanglement and its relation to some of the basic properties of quantum computing, and the physics associated with the study of optical lattices are presented.


Handbook of Thin Films, Five-Volume Set

Handbook of Thin Films, Five-Volume Set

Author: Hari Singh Nalwa

Publisher: Academic Press

Published: 2001-10-29

Total Pages: 661

ISBN-13: 0125129084

DOWNLOAD EBOOK

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.


Optics and Its Applications

Optics and Its Applications

Author: David Blaschke

Publisher: Springer Nature

Published: 2022-10-05

Total Pages: 225

ISBN-13: 3031112873

DOWNLOAD EBOOK

This book features selected articles based on contributions presented at the 9th International Symposium on Optics and Its Applications (OPTICS-2022) in Yerevan-Ashtarak, Armenia. The annual OPTICS symposium brings together renowned experts from all over the world working in the fields of atomic optics, plasmonics, optics of nanostructures, as well as the optics of condensed matter, and provides a perfect setting for their discussions of the most recent developments in this area. The 9th iteration in this series, dedicated to the 80th birthday of Academician Eduard Kazaryan, focuses on topics dealing with the spectroscopy of real and artificial atoms, linear and nonlinear optical characteristics of quantum wells, and two-dimensional materials. The book highlights recent results of few-particle optical characteristics of artificial atoms in the framework of the exactly solvable Moshinsky model, as well as an electro-optical analog of the magneto-optical Faraday effect. In addition, a detailed study of the nucleation process, its characterization, as well as electronic and optical properties of graded composition quantum dots in the Stranski−Krastanov growth mode, is presented.


Polaritons in Periodic and Quasiperiodic Structures

Polaritons in Periodic and Quasiperiodic Structures

Author: Eudenilson L. Albuquerque

Publisher: Elsevier

Published: 2004-12-09

Total Pages: 359

ISBN-13: 0080539173

DOWNLOAD EBOOK

In recent years there have been exciting developments in techniques for producing multilayered structures of different materials, often with thicknesses as small as only a few atomic layers. These artificial structures, known as superlattices, can either be grown with the layers stacked in an alternating fashion (the periodic case) or according to some other well-defined mathematical rule (the quasiperiodic case). This book describes research on the excitations (or wave-like behavior) of these materials, with emphasis on how the material properties are coupled to photons (the quanta of the light or the electromagnetic radiation) to produce "mixed waves called polaritons.·Clear and comprehensive account of polaritons in multilayered structures·Covers both periodic and quasiperiodic superlattices·Careful attention to theoretical developments and tools·Invaluable guide for researchers in this field·Shows developments from the basics to advanced topics