Introduction to Quantum Groups and Crystal Bases

Introduction to Quantum Groups and Crystal Bases

Author: Jin Hong

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 327

ISBN-13: 0821828746

DOWNLOAD EBOOK

The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.


Crystal Bases: Representations And Combinatorics

Crystal Bases: Representations And Combinatorics

Author: Daniel Bump

Publisher: World Scientific Publishing Company

Published: 2017-01-17

Total Pages: 292

ISBN-13: 9814733466

DOWNLOAD EBOOK

This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.


Tensor Categories

Tensor Categories

Author: Pavel Etingof

Publisher: American Mathematical Soc.

Published: 2016-08-05

Total Pages: 362

ISBN-13: 1470434415

DOWNLOAD EBOOK

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.


Introduction to Quantum Groups

Introduction to Quantum Groups

Author: George Lusztig

Publisher: Springer Science & Business Media

Published: 2010-10-27

Total Pages: 361

ISBN-13: 0817647171

DOWNLOAD EBOOK

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.


Lectures on Quantum Groups

Lectures on Quantum Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 282

ISBN-13: 0821804782

DOWNLOAD EBOOK

The material is very well motivated ... Of the various monographs available on quantum groups, this one ... seems the most suitable for most mathematicians new to the subject ... will also be appreciated by a lot of those with considerably more experience. --Bulletin of the London Mathematical Society Since its origin, the theory of quantum groups has become one of the most fascinating topics of modern mathematics, with numerous applications to several sometimes rather disparate areas, including low-dimensional topology and mathematical physics. This book is one of the first expositions that is specifically directed to students who have no previous knowledge of the subject. The only prerequisite, in addition to standard linear algebra, is some acquaintance with the classical theory of complex semisimple Lie algebras. Starting with the quantum analog of $\mathfrak{sl}_2$, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebras. The choice of the topics and the style of exposition make Jantzen's book an excellent textbook for a one-semester course on quantum groups.


Quantum Groups and Their Primitive Ideals

Quantum Groups and Their Primitive Ideals

Author: Anthony Joseph

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 394

ISBN-13: 3642784003

DOWNLOAD EBOOK

by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.


A Book of Abstract Algebra

A Book of Abstract Algebra

Author: Charles C Pinter

Publisher: Courier Corporation

Published: 2010-01-14

Total Pages: 402

ISBN-13: 0486474178

DOWNLOAD EBOOK

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.


Introduction to Crystallography

Introduction to Crystallography

Author: Donald E. Sands

Publisher: Courier Corporation

Published: 2012-06-14

Total Pages: 196

ISBN-13: 0486136809

DOWNLOAD EBOOK

Clear, concise explanation of logical development of basic crystallographic concepts. Topics include crystals and lattices, symmetry, x-ray diffraction, and more. Problems, with answers. 114 illustrations. 1969 edition.


Quantum Groups

Quantum Groups

Author: Ross Street

Publisher: Cambridge University Press

Published: 2007-01-18

Total Pages: 160

ISBN-13: 1139461443

DOWNLOAD EBOOK

Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.