Book of Proof

Book of Proof

Author: Richard H. Hammack

Publisher:

Published: 2016-01-01

Total Pages: 314

ISBN-13: 9780989472111

DOWNLOAD EBOOK

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.


Proofs from THE BOOK

Proofs from THE BOOK

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 194

ISBN-13: 3662223430

DOWNLOAD EBOOK

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.


Introduction to Proof in Abstract Mathematics

Introduction to Proof in Abstract Mathematics

Author: Andrew Wohlgemuth

Publisher: Courier Corporation

Published: 2014-06-10

Total Pages: 385

ISBN-13: 0486141683

DOWNLOAD EBOOK

The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.


An Introduction to Proof through Real Analysis

An Introduction to Proof through Real Analysis

Author: Daniel J. Madden

Publisher: John Wiley & Sons

Published: 2017-09-12

Total Pages: 450

ISBN-13: 1119314720

DOWNLOAD EBOOK

An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.


An Introduction to Mathematical Proofs

An Introduction to Mathematical Proofs

Author: Nicholas A. Loehr

Publisher: CRC Press

Published: 2019-11-20

Total Pages: 483

ISBN-13: 1000709809

DOWNLOAD EBOOK

An Introduction to Mathematical Proofs presents fundamental material on logic, proof methods, set theory, number theory, relations, functions, cardinality, and the real number system. The text uses a methodical, detailed, and highly structured approach to proof techniques and related topics. No prerequisites are needed beyond high-school algebra. New material is presented in small chunks that are easy for beginners to digest. The author offers a friendly style without sacrificing mathematical rigor. Ideas are developed through motivating examples, precise definitions, carefully stated theorems, clear proofs, and a continual review of preceding topics. Features Study aids including section summaries and over 1100 exercises Careful coverage of individual proof-writing skills Proof annotations and structural outlines clarify tricky steps in proofs Thorough treatment of multiple quantifiers and their role in proofs Unified explanation of recursive definitions and induction proofs, with applications to greatest common divisors and prime factorizations About the Author: Nicholas A. Loehr is an associate professor of mathematics at Virginia Technical University. He has taught at College of William and Mary, United States Naval Academy, and University of Pennsylvania. He has won many teaching awards at three different schools. He has published over 50 journal articles. He also authored three other books for CRC Press, including Combinatorics, Second Edition, and Advanced Linear Algebra.


Introduction to Proof Through Number Theory

Introduction to Proof Through Number Theory

Author: Bennett Chow

Publisher: American Mathematical Society

Published: 2023-02-09

Total Pages: 465

ISBN-13: 1470470276

DOWNLOAD EBOOK

Lighten up about mathematics! Have fun. If you read this book, you will have to endure bad math puns and jokes and out-of-date pop culture references. You'll learn some really cool mathematics to boot. In the process, you will immerse yourself in living, thinking, and breathing logical reasoning. We like to call this proofs, which to some is a bogey word, but to us it is a boogie word. You will learn how to solve problems, real and imagined. After all, math is a game where, although the rules are pretty much set, we are left to our imaginations to create. Think of this book as blueprints, but you are the architect of what structures you want to build. Make sure you lay a good foundation, for otherwise your buildings might fall down. To help you through this, we guide you to think and plan carefully. Our playground consists of basic math, with a loving emphasis on number theory. We will encounter the known and the unknown. Ancient and modern inquirers left us with elementary-sounding mathematical puzzles that are unsolved to this day. You will learn induction, logic, set theory, arithmetic, and algebra, and you may one day solve one of these puzzles.


How to Prove It

How to Prove It

Author: Daniel J. Velleman

Publisher: Cambridge University Press

Published: 2006-01-16

Total Pages: 401

ISBN-13: 0521861241

DOWNLOAD EBOOK

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.


Journey into Mathematics

Journey into Mathematics

Author: Joseph J. Rotman

Publisher: Courier Corporation

Published: 2013-01-18

Total Pages: 323

ISBN-13: 0486151689

DOWNLOAD EBOOK

This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.


Mathematical Reasoning

Mathematical Reasoning

Author: Theodore A. Sundstrom

Publisher: Prentice Hall

Published: 2007

Total Pages: 0

ISBN-13: 9780131877184

DOWNLOAD EBOOK

Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom


A Classical Introduction to Modern Number Theory

A Classical Introduction to Modern Number Theory

Author: K. Ireland

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 355

ISBN-13: 1475717792

DOWNLOAD EBOOK

This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.