Statistical Power Analysis for the Behavioral Sciences

Statistical Power Analysis for the Behavioral Sciences

Author: Jacob Cohen

Publisher: Routledge

Published: 2013-05-13

Total Pages: 625

ISBN-13: 1134742770

DOWNLOAD EBOOK

Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.


Practical Statistical Power Analysis

Practical Statistical Power Analysis

Author: Zhiyong Zhang

Publisher: Isdsa Press

Published: 2018-05

Total Pages: 358

ISBN-13: 9781946728029

DOWNLOAD EBOOK

The importance of conducting a statistical power analysis at the beginning of a study is universally accepted. Without careful planning, a study can easily fail to detect an existing effect by chance. This book teaches how to conduct power analysis for a range of models from correlation and t-test to structural equation models and multilevel models. Both a graphical Web software WebPower and an R package are introduced to practically conduct the analysis.


How Many Subjects?

How Many Subjects?

Author: Helena Chmura Kraemer

Publisher: SAGE

Published: 1987-09

Total Pages: 128

ISBN-13: 9780803929494

DOWNLOAD EBOOK

How Many Subjects? is a practical guide to sample size calculations and general principles of cost-effective research. It introduces a simple technique of statistical power analysis which allows researchers to compute approximate sample sizes and power for a wide variety of research designs. Because the same technique is used with only slight modifications for different statistical tests, researchers can easily compare the sample sizes required by different designs and tests to make cost-effective decisions in planning a study. These comparisons, emphasized throughout the book, demonstrate important principles of design, measurement and analysis that are rarely discussed in courses or textbooks.


Introduction to Power Analysis

Introduction to Power Analysis

Author: E. C. Hedberg

Publisher: SAGE Publications

Published: 2017-12-05

Total Pages: 157

ISBN-13: 1506343112

DOWNLOAD EBOOK

Introduction to Power Analysis: Two-Group Studies provides readers with the background, examples, and explanation they need to read technical papers and materials that include complex power analyses. This clear and accessible guide explains the components of test statistics and their sampling distributions, and author Eric Hedberg walks the reader through the simple and complex considerations of this research question. Filled with graphics and examples, the reader is taken on a tour of power analyses from covariates to clusters, seeing how the complicated task of comparing two groups, and the power analysis, can be made easy.


Doing Meta-Analysis with R

Doing Meta-Analysis with R

Author: Mathias Harrer

Publisher: CRC Press

Published: 2021-09-15

Total Pages: 500

ISBN-13: 1000435636

DOWNLOAD EBOOK

Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book


Power Analysis for Experimental Research

Power Analysis for Experimental Research

Author: R. Barker Bausell

Publisher: Cambridge University Press

Published: 2002-09-19

Total Pages: 379

ISBN-13: 1139441663

DOWNLOAD EBOOK

Power analysis is an essential tool for determining whether a statistically significant result can be expected in a scientific experiment prior to the experiment being performed. Many funding agencies and institutional review boards now require power analyses to be carried out before they will approve experiments, particularly where they involve the use of human subjects. This comprehensive, yet accessible, book provides practising researchers with step-by-step instructions for conducting power/sample size analyses, assuming only basic prior knowledge of summary statistics and the normal distribution. It contains a unified approach to statistical power analysis, with numerous easy-to-use tables to guide the reader without the need for further calculations or statistical expertise. This will be an indispensable text for researchers and graduates in the medical and biological sciences needing to apply power analysis in the design of their experiments.


Statistical Power Analysis for the Social and Behavioral Sciences

Statistical Power Analysis for the Social and Behavioral Sciences

Author: Xiaofeng Steven Liu

Publisher: Routledge

Published: 2013-11-07

Total Pages: 285

ISBN-13: 1136464182

DOWNLOAD EBOOK

This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.


The Essential Guide to Effect Sizes

The Essential Guide to Effect Sizes

Author: Paul D. Ellis

Publisher: Cambridge University Press

Published: 2010-07

Total Pages: 193

ISBN-13: 0521142466

DOWNLOAD EBOOK

A jargon-free introduction for students and researchers looking to interpret the practical significance of their results.


Power Analysis of Trials with Multilevel Data

Power Analysis of Trials with Multilevel Data

Author: Mirjam Moerbeek

Publisher: CRC Press

Published: 2015-07-01

Total Pages: 275

ISBN-13: 1498729908

DOWNLOAD EBOOK

Power Analysis of Trials with Multilevel Data is a valuable reference for anyone who wants to perform power calculations on trials with hierarchical data. It provides a thorough overview of power analysis, familiarizing you with terminology and notation, outlining the key concepts of statistical power and power analysis, and covering all common hierarchical designs.


Handbook of Regression Modeling in People Analytics

Handbook of Regression Modeling in People Analytics

Author: Keith McNulty

Publisher: CRC Press

Published: 2021-07-29

Total Pages: 272

ISBN-13: 1000427897

DOWNLOAD EBOOK

Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) Clear step-by-step instructions on executing the analyses Clear guidance on how to interpret results Primary instruction in R but added sections for Python coders Discussion exercises and data exercises for each of the main chapters Final chapter of practice material and datasets ideal for class homework or project work.