NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2003-01-01

Total Pages: 459

ISBN-13: 8120321863

DOWNLOAD EBOOK

This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2017-05-01

Total Pages: 574

ISBN-13: 812035334X

DOWNLOAD EBOOK

The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


Compensatory Genetic Fuzzy Neural Networks and Their Applications

Compensatory Genetic Fuzzy Neural Networks and Their Applications

Author: Yan-Qing Zhang

Publisher: World Scientific

Published: 1998

Total Pages: 206

ISBN-13: 9789810233495

DOWNLOAD EBOOK

This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques.


Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Author: Lakhmi C. Jain

Publisher: CRC Press

Published: 2020-01-29

Total Pages: 366

ISBN-13: 1000722945

DOWNLOAD EBOOK

Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.


Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering

Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering

Author: Nikola K. Kasabov

Publisher: Marcel Alencar

Published: 1996

Total Pages: 581

ISBN-13: 0262112124

DOWNLOAD EBOOK

Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.


Computational Intelligence

Computational Intelligence

Author: Russell C. Eberhart

Publisher: Elsevier

Published: 2011-04-18

Total Pages: 543

ISBN-13: 0080553834

DOWNLOAD EBOOK

Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. - Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation - Details the metrics and analytical tools needed to assess the performance of computational intelligence tools - Concludes with a series of case studies that illustrate a wide range of successful applications - Presents code examples in C and C++ - Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study


Artificial Neural Nets and Genetic Algorithms

Artificial Neural Nets and Genetic Algorithms

Author: Vera Kurkova

Publisher: Springer Science & Business Media

Published: 2001-04-11

Total Pages: 528

ISBN-13: 9783211836514

DOWNLOAD EBOOK

The first ICANNGA conference, devoted to biologically inspired computational paradigms, Neural Net works and Genetic Algorithms, was held in Innsbruck, Austria, in 1993. The meeting attracted researchers from all over Europe and further afield, who decided that this particular blend of topics should form a theme for a series of biennial conferences. The second meeting, held in Ales, France, in 1995, carried on the tradition set in Innsbruck of a relaxed and stimulating environment for the. exchange of ideas. The series has continued in Norwich, UK, in 1997, and Portoroz, Slovenia, in 1999. The Institute of Computer Science, Czech Academy of Sciences, is pleased to host the fifth conference in Prague. We have chosen the Liechtenstein palace under the Prague Castle as the conference site to enhance the traditionally good atmosphere of the meeting. There is an inspirational genius loci of the historical center of the city, where four hundred years ago a fruitful combination of theoretical and empirical method, through the collaboration of Johannes Kepler and Tycho de Brahe, led to the discovery of the laws of planetary orbits.


Neural Networks

Neural Networks

Author: Raul Rojas

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 3642610684

DOWNLOAD EBOOK

Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.


Intelligent Control

Intelligent Control

Author: Nazmul Siddique

Publisher: Springer

Published: 2013-11-29

Total Pages: 292

ISBN-13: 3319021354

DOWNLOAD EBOOK

Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.