Neural Networks in Business

Neural Networks in Business

Author: Kate A. Smith

Publisher: IGI Global

Published: 2003-01-01

Total Pages: 274

ISBN-13: 9781931777797

DOWNLOAD EBOOK

"For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."


Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Author: Richard Segall

Publisher: Engineering Science Reference

Published: 2021-11

Total Pages:

ISBN-13: 9781799884552

DOWNLOAD EBOOK

"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--


Data Mining and Machine Learning

Data Mining and Machine Learning

Author: Mohammed J. Zaki

Publisher: Cambridge University Press

Published: 2020-01-30

Total Pages: 779

ISBN-13: 1108473989

DOWNLOAD EBOOK

New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.


Data Mining for Business Analytics

Data Mining for Business Analytics

Author: Galit Shmueli

Publisher: John Wiley & Sons

Published: 2019-10-14

Total Pages: 608

ISBN-13: 111954985X

DOWNLOAD EBOOK

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R


Introduction to Neural Networks and Data Mining for Business Applications

Introduction to Neural Networks and Data Mining for Business Applications

Author: Kate A. Smith

Publisher:

Published: 1999

Total Pages: 155

ISBN-13: 9781864910049

DOWNLOAD EBOOK

Neural networks are a hot topic in the business community today. Also marketed as intelligent techniques, business intelligence and data mining, many businesses are now realising the potential of neural networks to give them a competitive edge. Nevertheless most neural network books are written by electrical engineers for electrical engineers, with a high level of mathematics. Those few books aimed at the business community invariably focus exclusively on financial prediction. Consequently, Introduction to Neural Networks and Data Mining for Business Applications is a ground breaking text. With a minimum of mathematics, it shows the potential of neural networks to unlock hidden information in data of various industries including retail, marketing, insurance, telecommunications, banking and finance, and operations management. The book covers the development of neural network research and its impact on business; the early neural Perceptron model and its limitations; backpropagation, the most commonly used learning paradigm in business applications; self-organisation; and adaptive resonance theory. Data mining is then covered including the purpose, methodology, and concepts of directed and undirected knowledge discovery. Other intelligent techniques often used in conjunction with neural networks are also covered, including genetic algorithms, fuzzy logic, and expert systems. The text concludes with a discussion of the future of neural networks research and applications. Extensive business case studies are used throughout the text to demonstrate techniques.


Data Mining and Analysis

Data Mining and Analysis

Author: Mohammed J. Zaki

Publisher: Cambridge University Press

Published: 2014-05-12

Total Pages: 607

ISBN-13: 0521766338

DOWNLOAD EBOOK

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.


Business Applications of Neural Networks

Business Applications of Neural Networks

Author: Bill Edisbury

Publisher: World Scientific

Published: 2000

Total Pages: 222

ISBN-13: 9812813314

DOWNLOAD EBOOK

Neural networks are increasingly being used in real-world business applications and, in some cases, such as fraud detection, they have already become the method of choice. Their use for risk assessment is also growing and they have been employed to visualise complex databases for marketing segmentation. This boom in applications covers a wide range of business interests - from finance management, through forecasting, to production. The combination of statistical, neural and fuzzy methods now enables direct quantitative studies to be carried out without the need for rocket-science expertise. This is a review of the state-of-the-art in applications of neural-network methods in three important areas of business analysis. It includes a tutorial chapter to introduce new users to the potential and pitfalls of this new technology.


Soft Computing for Knowledge Discovery and Data Mining

Soft Computing for Knowledge Discovery and Data Mining

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2007-10-25

Total Pages: 431

ISBN-13: 038769935X

DOWNLOAD EBOOK

Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.


Machine Learning in Business

Machine Learning in Business

Author: JOHN. HULL C

Publisher:

Published: 2021

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

"The big data revolution is changing the way businesses operate and the skills required by managers. In creating the third edition, John Hull has continued to improve his material and added many new examples. The book explains the most popular machine learning algorithms clearly and succinctly; provides many examples of applications of machine learning in business; provides the knowledge managers need to work productively with data science professionals; has an accompanying website with data, worksheets, and Python code"--Back of cover.


Neural Networks: Computational Models and Applications

Neural Networks: Computational Models and Applications

Author: Huajin Tang

Publisher: Springer Science & Business Media

Published: 2007-03-12

Total Pages: 310

ISBN-13: 3540692258

DOWNLOAD EBOOK

Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.