Introduction to the Theory of Traffic Flow

Introduction to the Theory of Traffic Flow

Author: Wilhelm Leutzbach

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 210

ISBN-13: 3642613535

DOWNLOAD EBOOK

This book describes a coherent approach to the explanation of the movement of individual vehicles or groups of vehicles. To avoid possible misunderstandings, some preliminary remarks are called for. 1. This is intended to be a textbook. It brings together methods and approaches that are widely distributed throughout the literature and that are therefore difficult to assess. Text citations of sources have been avoided; literature references are listed together at the end of the book. 2. The book is intended primarily for students of engineering. It describes the theoretical background necessary for an understanding of the methods by which links in a road network are designed and dimensioned or by which traffic is controlled; the methods themselves are not dealt with. It may also assist those actually working in such sectors to interpret the results of traffic flow measure ments more accurately than has hitherto been the case. 3. The book deals with traffic flow on links between nodes, and not at nodes themselves. Many readers will probably regret this, since nodes are usually the bottlenecks which limit the capacity of the road network. A book dedicated to the node would be the obvious follow-up. A separation of link and node is justified, however, partly because the quantity of material has to be kept within reasonable bounds and partly because the treatment of traffic flow at nodes requires additional mathematical techniques (in particular, those relating to queueing theory).


Introduction to Network Traffic Flow Theory

Introduction to Network Traffic Flow Theory

Author: Wen-Long Jin

Publisher: Elsevier

Published: 2021-04-13

Total Pages: 284

ISBN-13: 0128158417

DOWNLOAD EBOOK

Introduction to Network Traffic Flow Theory: Principles, Concepts, Models, and Methods provides a comprehensive introduction to modern theories for modeling, mathematical analysis and traffic simulations in road networks. The book breaks ground, addressing traffic flow theory in a network setting and providing researchers and transportation professionals with a better understanding of how network traffic flows behave, how congestion builds and dissipates, and how to develop strategies to alleviate network traffic congestion. The book also shows how network traffic flow theory is key to understanding traffic estimation, control, management and planning. Users wills find this to be a great resource on both theory and applications across a wide swath of subjects, including road networks and reduced traffic congestion. - Covers the most theoretically and practically relevant network traffic flow theories - Provides a systematic introduction to traditional and recently developed models, including cell transmission, link transmission, link queue, point queue, macroscopic and microscopic models, junction models and network stationary states - Applies modern network traffic flow theory to real-world applications in modeling, analysis, estimation, control, management and planning


An Introduction to Traffic Flow Theory

An Introduction to Traffic Flow Theory

Author: Lily Elefteriadou

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 262

ISBN-13: 1461484359

DOWNLOAD EBOOK

This text provides a comprehensive and concise treatment of the topic of traffic flow theory and includes several topics relevant to today’s highway transportation system. It provides the fundamental principles of traffic flow theory as well as applications of those principles for evaluating specific types of facilities (freeways, intersections, etc.). Newer concepts of Intelligent transportation systems (ITS) and their potential impact on traffic flow are discussed. State-of-the-art in traffic flow research and microscopic traffic analysis and traffic simulation have significantly advanced and are also discussed in this text. Real world examples and useful problem sets complement each chapter. This textbook is meant for use in advanced undergraduate/graduate level courses in traffic flow theory with prerequisites including two semesters of calculus, statistics, and an introductory course in transportation. The text would also be of interest to transportation professionals as a refresher in traffic flow theory, or as a reference. Students and engineers of diverse backgrounds will find this text accessible and applicable to today’s traffic issues.


Introduction to Modern Traffic Flow Theory and Control

Introduction to Modern Traffic Flow Theory and Control

Author: Boris S. Kerner

Publisher: Springer Science & Business Media

Published: 2009-09-16

Total Pages: 271

ISBN-13: 3642026052

DOWNLOAD EBOOK

The understanding of empirical traf?c congestion occurring on unsignalized mul- lane highways and freeways is a key for effective traf?c management, control, or- nization, and other applications of transportation engineering. However, the traf?c ?ow theories and models that dominate up to now in transportation research journals and teaching programs of most universities cannot explain either traf?c breakdown or most features of the resulting congested patterns. These theories are also the - sis of most dynamic traf?c assignment models and freeway traf?c control methods, which therefore are not consistent with features of real traf?c. For this reason, the author introduced an alternative traf?c ?ow theory called three-phase traf?c theory, which can predict and explain the empirical spatiot- poral features of traf?c breakdown and the resulting traf?c congestion. A previous book “The Physics of Traf?c” (Springer, Berlin, 2004) presented a discussion of the empirical spatiotemporal features of congested traf?c patterns and of three-phase traf?c theory as well as their engineering applications. Rather than a comprehensive analysis of empirical and theoretical results in the ?eld, the present book includes no more empirical and theoretical results than are necessary for the understanding of vehicular traf?c on unsignalized multi-lane roads. The main objectives of the book are to present an “elementary” traf?c ?ow theory and control methods as well as to show links between three-phase traf?c t- ory and earlier traf?c ?ow theories. The need for such a book follows from many commentsofcolleaguesmadeafterpublicationofthebook“ThePhysicsofTraf?c”.


Traffic Flow Theory

Traffic Flow Theory

Author: Daiheng Ni

Publisher: Butterworth-Heinemann

Published: 2015-11-09

Total Pages: 414

ISBN-13: 0128041471

DOWNLOAD EBOOK

Creating Traffic Models is a challenging task because some of their interactions and system components are difficult to adequately express in a mathematical form. Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical Techniques provide traffic engineers with the necessary methods and techniques for mathematically representing traffic flow. The book begins with a rigorous but easy to understand exposition of traffic flow characteristics including Intelligent Transportation Systems (ITS) and traffic sensing technologies. - Includes worked out examples and cases to illustrate concepts, models, and theories - Provides modeling and analytical procedures for supporting different aspects of traffic analyses for supporting different flow models - Carefully explains the dynamics of traffic flow over time and space


Breakdown in Traffic Networks

Breakdown in Traffic Networks

Author: Boris S. Kerner

Publisher: Springer

Published: 2017-05-26

Total Pages: 673

ISBN-13: 3662544733

DOWNLOAD EBOOK

This book offers a detailed investigation of breakdowns in traffic and transportation networks. It shows empirically that transitions from free flow to so-called synchronized flow, initiated by local disturbances at network bottlenecks, display a nucleation-type behavior: while small disturbances in free flow decay, larger ones grow further and lead to breakdowns at the bottlenecks. Further, it discusses in detail the significance of this nucleation effect for traffic and transportation theories, and the consequences this has for future automatic driving, traffic control, dynamic traffic assignment, and optimization in traffic and transportation networks. Starting from a large volume of field traffic data collected from various sources obtained solely through measurements in real world traffic, the author develops his insights, with an emphasis less on reviewing existing methodologies, models and theories, and more on providing a detailed analysis of empirical traffic data and drawing consequences regarding the minimum requirements for any traffic and transportation theories to be valid. The book - proves the empirical nucleation nature of traffic breakdown in networks - discusses the origin of the failure of classical traffic and transportation theories - shows that the three-phase theory is incommensurable with the classical traffic theories, and - explains why current state-of-the art dynamic traffic assignments tend to provoke heavy traffic congestion, making it a valuable reference resource for a wide audience of scientists and postgraduate students interested in the fundamental understanding of empirical traffic phenomena and related data-driven phenomenology, as well as for practitioners working in the fields of traffic and transportation engineering.


Routing, Flow, and Capacity Design in Communication and Computer Networks

Routing, Flow, and Capacity Design in Communication and Computer Networks

Author: Michal Pioro

Publisher: Elsevier

Published: 2004-07-21

Total Pages: 795

ISBN-13: 0080516432

DOWNLOAD EBOOK

In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice.Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. - Written by leading researchers with a combined 40 years of industrial and academic network design experience. - Considers the development of design models for different technologies, including TCP/IP, IDN, MPLS, ATM, SONET/SDH, and WDM. - Discusses recent topics such as shortest path routing and fair bandwidth assignment in IP/MPLS networks. - Addresses proper multi-layer modeling across network layers using different technologies—for example, IP over ATM over SONET, IP over WDM, and IDN over SONET. - Covers restoration-oriented design methods that allow recovery from failures of large-capacity transport links and transit nodes. - Presents, at the end of each chapter, exercises useful to both students and practitioners.


Research Trends in Combinatorial Optimization

Research Trends in Combinatorial Optimization

Author: William J. Cook

Publisher: Springer Science & Business Media

Published: 2008-11-07

Total Pages: 565

ISBN-13: 3540767967

DOWNLOAD EBOOK

The editors and authors dedicate this book to Bernhard Korte on the occasion of his seventieth birthday. We, the editors, are happy about the overwhelming feedback to our initiative to honor him with this book and with a workshop in Bonn on November 3–7,2008.Althoughthiswouldbeareasontolookback,wewouldratherliketolook forward and see what are the interesting research directions today. This book is written by leading experts in combinatorial optimization. All - pers were carefully reviewed, and eventually twenty-three of the invited papers were accepted for this book. The breadth of topics is typical for the eld: combinatorial optimization builds bridges between areas like combinatorics and graph theory, submodular functions and matroids, network ows and connectivity, approximation algorithms and mat- matical programming, computational geometry and polyhedral combinatorics. All these topics are related, and they are all addressed in this book. Combi- torial optimization is also known for its numerous applications. To limit the scope, however, this book is not primarily about applications, although some are mentioned at various places. Most papers in this volume are surveys that provide an excellent overview of an activeresearcharea,butthisbookalsocontainsmanynewresults.Highlightingmany of the currently most interesting research directions in combinatorial optimization, we hope that this book constitutes a good basis for future research in these areas.