Introduction to Molecular Thermodynamics

Introduction to Molecular Thermodynamics

Author: Robert M. Hanson

Publisher:

Published: 2008-07-21

Total Pages: 324

ISBN-13:

DOWNLOAD EBOOK

Starting with just a few basic principles of probability and the distribution of energy, this book takes students on a trip into the inner workings of the molecular world, from probability to Gibbs' energy and beyond, following a logical, step-by-step progression of ideas.


Introduction to Chemistry

Introduction to Chemistry

Author: Amos Turk

Publisher: Elsevier

Published: 2013-07-15

Total Pages: 592

ISBN-13: 0323145051

DOWNLOAD EBOOK

Introduction to Chemistry is a 26-chapter introductory textbook in general chemistry. This book deals first with the atoms and the arithmetic and energetics of their combination into molecules. The subsequent chapters consider the nature of the interactions among atoms or the so-called chemical bonding. This topic is followed by discussions on the nature of intermolecular forces and the states of matter. This text further explores the statistics and dynamics of chemistry, including the study of equilibrium and kinetics. Other chapters cover the aspects of ionic equilibrium, acids and bases, and galvanic cells. The concluding chapters focus on a descriptive study of chemistry, such as the representative and transition elements, organic and nuclear chemistry, metals, polymers, and biochemistry. Teachers and undergraduate chemistry students will find this book of great value.


Introduction to Protein-DNA Interactions

Introduction to Protein-DNA Interactions

Author: Gary Stormo

Publisher:

Published: 2013

Total Pages: 198

ISBN-13: 9781936113491

DOWNLOAD EBOOK

One of the foundations of molecular biology is how the interactions of proteins with DNA control many aspects of gene expression. Since the mid-20th century discoveries of the lac repressor and operator and the competition between the cI and cro proteins for the same segment of DNA, we have learned an enormous amount about the interactions of proteins with DNA and their control of fundamental processes in the cell. Introduction to Protein-DNA Interactions: Structure, Thermodynamics, and Bioinformatics describes what we know about protein-DNA interactions from the complementary perspectives of molecular and structural biology and bioinformatics and how each perspective informs the others. A particular emphasis is on how insights from experimental work can be translated into specific computational approaches to create unified view of the field and a fuller understanding of protein-DNA interactions.


Fundamentals of Chemical Engineering Thermodynamics

Fundamentals of Chemical Engineering Thermodynamics

Author: Themis Matsoukas

Publisher: Pearson Education

Published: 2013

Total Pages: 719

ISBN-13: 0132693062

DOWNLOAD EBOOK

Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.


An Introduction to Statistical Mechanics and Thermodynamics

An Introduction to Statistical Mechanics and Thermodynamics

Author: Robert H. Swendsen

Publisher: Oxford University Press

Published: 2012-03

Total Pages: 422

ISBN-13: 0199646945

DOWNLOAD EBOOK

This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.


Molecular Physical Chemistry

Molecular Physical Chemistry

Author: José J. C. Teixeira-Dias

Publisher: Springer

Published: 2017-01-16

Total Pages: 466

ISBN-13: 3319410938

DOWNLOAD EBOOK

This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica®), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica® codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica® or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.


An Introduction to Applied Statistical Thermodynamics

An Introduction to Applied Statistical Thermodynamics

Author: Stanley I. Sandler

Publisher: John Wiley & Sons

Published: 2010-11-16

Total Pages: 370

ISBN-13: 0470913479

DOWNLOAD EBOOK

One of the goals of An Introduction to Applied Statistical Thermodynamics is to introduce readers to the fundamental ideas and engineering uses of statistical thermodynamics, and the equilibrium part of the statistical mechanics. This text emphasises on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics. It provides an introduction to the simplest forms of Monte Carlo and molecular dynamics simulation (albeit only for simple spherical molecules) and user-friendly MATLAB programs for doing such simulations, and also some other calculations. The purpose of this text is to provide a readable introduction to statistical thermodynamics, show its utility and the way the results obtained lead to useful generalisations for practical application. The text also illustrates the difficulties that arise in the statistical thermodynamics of dense fluids as seen in the discussion of liquids.


Information Theory of Molecular Systems

Information Theory of Molecular Systems

Author: Roman F Nalewajski

Publisher: Elsevier

Published: 2006-03-31

Total Pages: 463

ISBN-13: 0080459749

DOWNLOAD EBOOK

As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT), followed by an outline of the main ideas and techniques of IT, including several illustrative applications to molecular systems. Coverage includes information origins of the chemical bond, unbiased definition of molecular fragments, adequate entropic measures of their internal (intra-fragment) and external (inter-fragment) bond-orders and valence-numbers, descriptors of their chemical reactivity, and information criteria of their similarity and independence. Information Theory of Molecular Systems is recommended to graduate students and researchers interested in fresh ideas in the theory of electronic structure and chemical reactivity.·Provides powerful tools for tackling both classical and new problems in the theory of the molecular electronic structure and chemical reactivity·Introduces basic concepts of the modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT)·Outlines main ideas and techniques of Information Theory