Introduction to Matrices and Vectors

Introduction to Matrices and Vectors

Author: Jacob T. Schwartz

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 198

ISBN-13: 0486143708

DOWNLOAD EBOOK

Realizing that matrices can be a confusing topic for the beginner, the author of this undergraduate text has made things as clear as possible by focusing on problem solving, rather than elaborate proofs. He begins with the basics, offering students a solid foundation for the later chapters on using special matrices to solve problems.The first three chapters present the basics of matrices, including addition, multiplication, and division, and give solid practice in the areas of matrix manipulation where the laws of algebra do not apply. In later chapters the author introduces vectors and shows how to use vectors and matrices to solve systems of linear equations. He also covers special matrices — including complex numbers, quaternion matrices, and matrices with complex entries — and transpose matrices; the trace of a matrix; the cross product of matrices; eigenvalues and eigenvectors; and infinite series of matrices. Exercises at the end of each section give students further practice in problem solving. Prerequisites include a background in algebra, and in the later chapters, a knowledge of solid geometry. The book was designed as an introductory text for college freshmen and sophomores, but selected chapters can also be used to supplement advanced high school classes. Professionals who need a better understanding or review of the subject will also benefit from this concise guide.


Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra

Author: Stephen Boyd

Publisher: Cambridge University Press

Published: 2018-06-07

Total Pages: 477

ISBN-13: 1316518965

DOWNLOAD EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.


Primer of Applied Regression & Analysis of Variance 3E

Primer of Applied Regression & Analysis of Variance 3E

Author: Stanton A. Glantz

Publisher: McGraw Hill Professional

Published: 2016-02-22

Total Pages: 1212

ISBN-13: 0071822445

DOWNLOAD EBOOK

A textbook on the use of advanced statistical methods in healthcare sciences Primer of Applied Regression & Analysis of Variance is a textbook especially created for medical, public health, and social and environmental science students who need applied (not theoretical) training in the use of statistical methods. The book has been acclaimed for its user-friendly style that makes complicated material understandable to readers who do not have an extensive math background. The text is packed with learning aids that include chapter-ending summaries and end-of-chapter problems that quickly assess mastery of the material. Examples from biological and health sciences are included to clarify and illustrate key points. The techniques discussed apply to a wide range of disciplines, including social and behavioral science as well as health and life sciences. Typical courses that would use this text include those that cover multiple linear regression and ANOVA. Four completely new chapters Completely updated software information and examples


Algebra: A Very Short Introduction

Algebra: A Very Short Introduction

Author: Peter M. Higgins

Publisher: OUP Oxford

Published: 2015-10-22

Total Pages: 161

ISBN-13: 0191047465

DOWNLOAD EBOOK

Algebra marked the beginning of modern mathematics, moving it beyond arithmetic, which involves calculations featuring given numbers, to problems where some quantities are unknown. Now, it stands as a pillar of mathematics, underpinning the quantitative sciences, both social and physical. This Very Short Introduction explains algebra from scratch. Over the course of ten logical chapters, Higgins offers a step by step approach for readers keen on developing their understanding of algebra. Using theory and example, he renews the reader's aquaintance with school mathematics, before taking them progressively further and deeper into the subject. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.


Linear Algebra

Linear Algebra

Author: Alan Tucker

Publisher: Macmillan College

Published: 1993

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

Covers the fundamental role of linear algebra with both pure and applied mathematics as well as client disciplines such as engineering, the physical sciences and economics. This text examines the interrelationships amongst theory, computation and applications.


Introduction to Linear and Matrix Algebra

Introduction to Linear and Matrix Algebra

Author: Nathaniel Johnston

Publisher: Springer Nature

Published: 2021-05-19

Total Pages: 482

ISBN-13: 3030528111

DOWNLOAD EBOOK

This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.


Machine Learning with Python Cookbook

Machine Learning with Python Cookbook

Author: Chris Albon

Publisher: "O'Reilly Media, Inc."

Published: 2018-03-09

Total Pages: 305

ISBN-13: 1491989335

DOWNLOAD EBOOK

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models


Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory

Author: Jimmie Gilbert

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 405

ISBN-13: 0080510256

DOWNLOAD EBOOK

Intended for a serious first course or a second course, this textbook will carry students beyond eigenvalues and eigenvectors to the classification of bilinear forms, to normal matrices, to spectral decompositions, and to the Jordan form. The authors approach their subject in a comprehensive and accessible manner, presenting notation and terminology clearly and concisely, and providing smooth transitions between topics. The examples and exercises are well designed and will aid diligent students in understanding both computational and theoretical aspects. In all, the straightest, smoothest path to the heart of linear algebra.* Special Features: * Provides complete coverage of central material.* Presents clear and direct explanations.* Includes classroom tested material.* Bridges the gap from lower division to upper division work.* Allows instructors alternatives for introductory or second-level courses.