This text covers a wide range of material, from the basics of laser resonators to advanced topics in laser diode pumping. The subject matter is presented in descriptive terms that are understandable by the technical professional who does not have a strong foundation in fundamental laser topics.
Solid-state lasers which offer multiple desirable qualities, including enhanced reliability, robustness, efficiency and wavelength diversity, are absolutely indispensable for many applications. The Handbook of solid-state lasers reviews the key materials, processes and applications of solid-state lasers across a wide range of fields.Part one begins by reviewing solid-state laser materials. Fluoride laser crystals, oxide laser ceramics, crystals and fluoride laser ceramics doped by rare earth and transition metal ions are discussed alongside neodymium, erbium and ytterbium laser glasses, and nonlinear crystals for solid-state lasers. Part two then goes on to explore solid-state laser systems and their applications, beginning with a discussion of the principles, powering and operation regimes for solid-state lasers. The use of neodymium-doped materials is considered, followed by system sizing issues with diode-pumped quasi-three level materials, erbium glass lasers, and microchip, fiber, Raman and cryogenic lasers. Laser mid-infrared systems, laser induced breakdown spectroscope and the clinical applications of surgical solid-state lasers are also explored. The use of solid-state lasers in defense programs is then reviewed, before the book concludes by presenting some environmental applications of solid-state lasers.With its distinguished editors and international team of expert contributors, the Handbook of solid-state lasers is an authoritative guide for all those involved in the design and application of this technology, including laser and materials scientists and engineers, medical and military professionals, environmental researchers, and academics working in this field. - Reviews the materials used in solid-state lasers - Explores the principles of solid-state laser systems and their applications - Considers defence and environmental applications
This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.
Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.
Explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. This book provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids.
Electrical Engineering Introduction to Laser Technology, Third Edition Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology, First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combination of clarity and technical depth, this book begins with an introductory chapter that explains the characteristics and important applications of commercial lasers worldwide. It proceeds with discussions on light and optics, the fundamental elements of lasers, and laser modification. The concluding chapters are composed of a survey of modern lasers, including: Semiconductor lasers Optically pumped solid-state lasers Ion, HeNe, and HeCd lasers Carbon dioxide lasers Excimer lasers (codiscovered by J. J. Ewing) Ultrafast and tunable lasers, OPOs Introduction to Laser Technology, Third Edition is intended for those who are familiar with the principles of electro-optical technology, but possess limited formal training. This comprehensive treatment is essential, one-stop shopping for professionals, students, and non-engineer executives interested in the design, sales, or applications of the laser and electro-optics industry.
Lasers have a wide and growing range of applications in medicine. Lasers for Medical Applications summarises the wealth of recent research on the principles, technologies and application of lasers in diagnostics, therapy and surgery.Part one gives an overview of the use of lasers in medicine, key principles of lasers and radiation interactions with tissue. To understand the wide diversity and therefore the large possible choice of these devices for a specific diagnosis or treatment, the respective types of the laser (solid state, gas, dye, and semiconductor) are reviewed in part two. Part three describes diagnostic laser methods, for example optical coherence tomography, spectroscopy, optical biopsy, and time-resolved fluorescence polarization spectroscopy. Those methods help doctors to refine the scope of involvement of the particular body part or, for example, to specify the extent of a tumor. Part four concentrates on the therapeutic applications of laser radiation in particular branches of medicine, including ophthalmology, dermatology, cardiology, urology, gynecology, otorhinolaryngology (ORL), neurology, dentistry, orthopaedic surgery and cancer therapy, as well as laser coatings of implants. The final chapter includes the safety precautions with which the staff working with laser instruments must be familiar.With its distinguished editor and international team of contributors, this important book summarizes international achievements in the field of laser applications in medicine in the past 50 years. It provides a valuable contribution to laser medicine by outstanding experts in medicine and engineering. - Describes the interaction of laser light with tissue - Reviews every type of laser used in medicine: solid state, gas, dye and semiconductor - Describes the use of lasers for diagnostics
Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.
William Risk, Timothy Gosnell and Arto Nurmikko have brought together their diverse expertise from industry and academia to write the first fully comprehensive book on the generation and application of blue-green lasers. This volume describes the theory and practical implementation of three techniques for the generation of blue-green light: nonlinear frequency conversion of infrared lasers, upconversion lasers, and wide bandgap semiconductor diode lasers. In addition, it looks at the various applications that have driven the development of compact sources of blue-green light, and reflects on the recent application of these lasers in high-density data storage, color displays, reprographics, and biomedical technology. Compact Blue-Green Lasers is suitable for graduate-level courses or as a reference for academics and professionals in optics, applied physics, and electrical engineering.
An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.