This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
What you need to know to engineer the global service economy. As customers and service providers create new value through globally interconnected service enterprises, service engineers are finding new opportunities to innovate, design, and manage the service operations and processes of the new service-based economy. Introduction to Service Engineering provides the tools and information a service engineer needs to fulfill this critical new role. The book introduces engineers as well as students to the fundamentals of the theory and practice of service engineering, covering the characteristics of service enterprises, service design and operations, customer service and service quality, web-based services, and innovations in service systems. Readers explore such key aspects of service engineering as: The role of service science in developing a smarter planet Service enterprises, including: enterprise value creation, architecture of service organizations, service enterprise modeling, and the application of methods of systems engineering to services Service design, including collaborative e-service systems and the new service development process Service operations and management, including service call centers Service quality, from design operations to customer relations Web-based services and technology in the global e-organization Innovation in service systems from service engineering to integrative solutions, service-oriented architecture solutions, and technology transfer streams With chapters written by fifty-seven specialists and edited by bestselling authors Gavriel Salvendy and Waldemar Karwowski, Introduction to Service Engineering uses numerous examples, problems, and real-world case studies to help readers master the knowledge and the skills required to succeed in service engineering.
Numerical Modeling in Biomedical Engineering brings together the integrative set of computational problem solving tools important to biomedical engineers. Through the use of comprehensive homework exercises, relevant examples and extensive case studies, this book integrates principles and techniques of numerical analysis. Covering biomechanical phenomena and physiologic, cell and molecular systems, this is an essential tool for students and all those studying biomedical transport, biomedical thermodynamics & kinetics and biomechanics. - Supported by Whitaker Foundation Teaching Materials Program; ABET-oriented pedagogical layout - Extensive hands-on homework exercises
This practical text will provide mechanical and manufacturing engineering undergraduates with an integrated introduction to Computer-Aided Engineering. Building on the students existing knowledge of the activities of an engineering enterprise, it explains how and why computers can be applied to the specification, design, manufacture and launch of a product. It is this integrative nature of CAE which is a major problem faced by students and therefore the importance of integration is stressed at all stages.
Metabolic and cellular engineering, as presented in this book, is a powerful alliance of two technologies: genetics-molecular biology and fermentation technology. Both are driven by continuous refinement of the basic understanding of metabolism, physiology and cellular biology (growth, division, differentiation), as well as the development of new mathematical modeling techniques. The authors' approach is original in that it integrates several disciplines into a coordinated scheme, i.e. microbial physiology and bioenergetics, thermodynamics and enzyme kinetics, biomathematics and biochemistry, genetics and molecular biology. Thus, it is called a transdisciplinary approach (TDA). The TDA provides the basis for the rational design of microorganisms or cells in a way that has rarely been utilized to its full extent.
Bioengineering is attracting many high quality students. This invaluable book has been written for beginning students of bioengineering, and is aimed at instilling a sense of engineering in them.Engineering is invention and designing things that do not exist in nature for the benefit of humanity. Invention can be taught by making inventive thinking a conscious part of our daily life. This is the approach taken by the authors of this book. Each author discusses an ongoing project, and gives a sample of a professional publication. Students are asked to work through a sequence of assignments and write a report. Almost everybody soon realizes that more scientific knowledge is needed, and a strong motivation for the study of science is generated. The teaching of inventive thinking is a new trend in engineering education. Bioengineering is a good field with which to begin this revolution in engineering education, because it is a youthful, developing interdisciplinary field.
Presenting the results of an ambitious project, this book summarizes the efforts towards an open, web-based modular and extendable simulation platform for materials engineering that allows simulations bridging several length scales. In so doing, it covers processes along the entire value chain and even describes such different classes of materials as metallic alloys and polymers. It comprehensively describes all structural ideas, the underlying concepts, standard specifications, the verification results obtained for different test cases and additionally how to utilize the platform as a user and how to join it as a provider. A resource for researchers, users and simulation software providers alike, the monograph provides an overview of the current status, serves as a generic manual for prospective users, and offers insights into the inner modular structure of the simulation platform.
This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.
This book places particular emphasis on issues of model quality and ideas of model testing and validation. Mathematical and computer-based models provide a foundation for explaining complex behaviour, decision-making, engineering design and for real-time simulators for research and training. Many engineering design techniques depend on suitable models, assessment of the adequacy of a given model for an intended application is therefore critically important. Generic model structures and dependable libraries of sub-models that can be applied repeatedly are increasingly important. Applications are drawn from the fields of mechanical, aeronautical and control engineering, and involve non-linear lumped-parameter models described by ordinary differential equations. - Focuses on issues of model quality and the suitability of a given model for a specific application - Multidisciplinary problems within engineering feature strongly in the applications - The development and testing of nonlinear dynamic models is given very strong emphasis