This clear, easy-to-comprehend resource offers a state-of-art treatment of the instrumentation, sensors and process control used in modern manufacturing. The book covers a wide range of technologies and techniques, fully explaining important related terminology. You learn how to use microprocessors for both analog and digital process control, as well as signal conditioning. Additionally, you gain a thorough understanding of the various types of valves and actuators used for flow control.
This book gives readers an understanding and appreciation of some of the theories behind control system elements and operations--without advanced math or calculus. It also presents some of the practical details of how elements of a control system are designed and operated--without the benefit of on-the-job experience. Chapter topics include process control; analog and digital signal conditioning; thermal, mechanical, and optical sensors; controller principles; and control loop characteristics. For those in the industry who will need to design the elements of a control system from a practical, working perspective, and comprehend how these elements affect overall system operation and tuning.
This textbook represents a major revision of the second edition of Instrumentation for Engineering Measurements, which was published by Wiley in 1993. Over the past twenty five years many developments of sensors and instruments have occurred. We have reviewed these developments and have updated the content in the original title.
In a clear and readable style, Bill Bolton addresses the basic principles of modern instrumentation and control systems, including examples of the latest devices, techniques and applications. Unlike the majority of books in this field, only a minimal prior knowledge of mathematical methods is assumed. The book focuses on providing a comprehensive introduction to the subject, with Laplace presented in a simple and easily accessible form, complimented by an outline of the mathematics that would be required to progress to more advanced levels of study.Taking a highly practical approach, Bill Bolton combines underpinning theory with numerous case studies and applications throughout, to enable the reader to apply the content directly to real-world engineering contexts. Coverage includes smart instrumentation, DAQ, crucial health and safety considerations, and practical issues such as noise reduction, maintenance and testing. An introduction to PLCs and ladder programming is incorporated in the text, as well as new information introducing the various software programmes used for simulation.Problems with a full answer section are also included, to aid the reader's self-assessment and learning, and a companion website (for lecturers only) at http://textbooks.elsevier.com features an Instructor's Manual including multiple choice questions, further assignments with detailed solutions, as well as additional teaching resources.The overall approach of this book makes it an ideal text for all introductory level undergraduate courses in control engineering and instrumentation. It is fully in line with latest syllabus requirements, and also covers, in full, the requirements of the Instrumentation & Control Principles and Control Systems & Automation units of the new Higher National Engineering syllabus from Edexcel.* Assumes minimal prior mathematical knowledge, creating a highly accessible student-centred text* Problems, case studies and applications included throughout, with a full set of answers at the back of the book, to aid student learning, and place theory in real-world engineering contexts* Free online lecturer resources featuring supporting notes, multiple-choice tests, lecturer handouts and further assignments and solutions
Learn how to develop your own applications to monitor or control instrumentation hardware. Whether you need to acquire data from a device or automate its functions, this practical book shows you how to use Python's rapid development capabilities to build interfaces that include everything from software to wiring. You get step-by-step instructions, clear examples, and hands-on tips for interfacing a PC to a variety of devices. Use the book's hardware survey to identify the interface type for your particular device, and then follow detailed examples to develop an interface with Python and C. Organized by interface type, data processing activities, and user interface implementations, this book is for anyone who works with instrumentation, robotics, data acquisition, or process control. Understand how to define the scope of an application and determine the algorithms necessary, and why it's important Learn how to use industry-standard interfaces such as RS-232, RS-485, and GPIB Create low-level extension modules in C to interface Python with a variety of hardware and test instruments Explore the console, curses, TkInter, and wxPython for graphical and text-based user interfaces Use open source software tools and libraries to reduce costs and avoid implementing functionality from scratch
The discipline of instrumentation has grown appreciably in recent years because of advances in sensor technology and in the interconnectivity of sensors, computers and control systems. This 4e of the Instrumentation Reference Book embraces the equipment and systems used to detect, track and store data related to physical, chemical, electrical, thermal and mechanical properties of materials, systems and operations. While traditionally a key area within mechanical and industrial engineering, understanding this greater and more complex use of sensing and monitoring controls and systems is essential for a wide variety of engineering areas--from manufacturing to chemical processing to aerospace operations to even the everyday automobile. In turn, this has meant that the automation of manufacturing, process industries, and even building and infrastructure construction has been improved dramatically. And now with remote wireless instrumentation, heretofore inaccessible or widely dispersed operations and procedures can be automatically monitored and controlled. This already well-established reference work will reflect these dramatic changes with improved and expanded coverage of the traditional domains of instrumentation as well as the cutting-edge areas of digital integration of complex sensor/control systems. - Thoroughly revised, with up-to-date coverage of wireless sensors and systems, as well as nanotechnologies role in the evolution of sensor technology - Latest information on new sensor equipment, new measurement standards, and new software for embedded control systems, networking and automated control - Three entirely new sections on Controllers, Actuators and Final Control Elements; Manufacturing Execution Systems; and Automation Knowledge Base - Up-dated and expanded references and critical standards
This is the first in-depth presentation in book form of current analytical methods for optimal design, selection and evaluation of instrumentation for process plants. The presentation is clear, concise and systematic-providing process engineers with a valuable tool for improving quality, costs, safety, loss prevention, and production accounting.
This book is aimed at engineers and technicians who need to have a clear, practical understanding of the essentials of process control, loop tuning and how to optimize the operation of their particular plant or process. The reader would typically be involved in the design, implementation and upgrading of industrial control systems. Mathematical theory has been kept to a minimum with the emphasis throughout on practical applications and useful information.This book will enable the reader to:* Specify and design the loop requirements for a plant using PID control* Identify and apply the essential building blocks in automatic control* Apply the procedures for open and closed loop tuning* Tune control loops with significant dead-times* Demonstrate a clear understanding of analog process control and how to tune analog loops* Explain concepts used by major manufacturers who use the most up-to-date technology in the process control field·A practical focus on the optimization of process and plant·Readers develop professional competencies, not just theoretical knowledge·Reduce dead-time with loop tuning techniques
Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors’ 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What’s New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describes sensor dynamics, signal conditioning, and data display and storage Focuses on means of conditioning the analog outputs of various sensors Considers noise and coherent interference in measurements in depth Covers the traditional topics of DC null methods of measurement and AC null measurements Examines Wheatstone and Kelvin bridges and potentiometers Explores the major AC bridges used to measure inductance, Q, capacitance, and D Presents a survey of sensor mechanisms Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers Contains the classic means of measuring electrical quantities Examines digital interfaces in measurement systems Defines digital signal conditioning in instrumentation Addresses solid-state chemical microsensors and wireless instrumentation Introduces mechanical microsensors (MEMS and NEMS) Details examples of the design of measurement systems Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents.
This introductory textbook on engineering system instrumentation emphasizes sensors, transducers, actuators, and devices for component interconnection. The book deals with instrumenting an engineering system through the incorporation of suitable sensors, actuators, and associated interface hardware including filters, amplifiers and other signal modifiers. In view of the practical considerations, design issues, and industrial techniques that are presented throughout the book, and in view of the simplified and snap-shot style presentation of more advanced theory and concepts, it also serves as a useful reference for engineers, technicians, project managers, and other practicing professionals in industry and in research laboratories.