This book provides the foundations for understanding hardware security and trust, which have become major concerns for national security over the past decade. Coverage includes security and trust issues in all types of electronic devices and systems such as ASICs, COTS, FPGAs, microprocessors/DSPs, and embedded systems. This serves as an invaluable reference to the state-of-the-art research that is of critical significance to the security of, and trust in, modern society’s microelectronic-supported infrastructures.
This book provides a comprehensive introduction to hardware security, from specification to implementation. Applications discussed include embedded systems ranging from small RFID tags to satellites orbiting the earth. The authors describe a design and synthesis flow, which will transform a given circuit into a secure design incorporating counter-measures against fault attacks. In order to address the conflict between testability and security, the authors describe innovative design-for-testability (DFT) computer-aided design (CAD) tools that support security challenges, engineered for compliance with existing, commercial tools. Secure protocols are discussed, which protect access to necessary test infrastructures and enable the design of secure access controllers.
Hardware Security: A Hands-On Learning Approach provides a broad, comprehensive and practical overview of hardware security that encompasses all levels of the electronic hardware infrastructure. It covers basic concepts like advanced attack techniques and countermeasures that are illustrated through theory, case studies and well-designed, hands-on laboratory exercises for each key concept. The book is ideal as a textbook for upper-level undergraduate students studying computer engineering, computer science, electrical engineering, and biomedical engineering, but is also a handy reference for graduate students, researchers and industry professionals. For academic courses, the book contains a robust suite of teaching ancillaries. Users will be able to access schematic, layout and design files for a printed circuit board for hardware hacking (i.e. the HaHa board) that can be used by instructors to fabricate boards, a suite of videos that demonstrate different hardware vulnerabilities, hardware attacks and countermeasures, and a detailed description and user manual for companion materials. - Provides a thorough overview of computer hardware, including the fundamentals of computer systems and the implications of security risks - Includes discussion of the liability, safety and privacy implications of hardware and software security and interaction - Gives insights on a wide range of security, trust issues and emerging attacks and protection mechanisms in the electronic hardware lifecycle, from design, fabrication, test, and distribution, straight through to supply chain and deployment in the field - A full range of instructor and student support materials can be found on the authors' own website for the book: http://hwsecuritybook.org
This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.
Design for security and meet real-time requirements with this must-have book covering basic theory, hardware design and implementation of cryptographic algorithms, and side channel analysis. Presenting state-of-the-art research and strategies for the design of very large scale integrated circuits and symmetric cryptosystems, the text discusses hardware intellectual property protection, obfuscation and physically unclonable functions, Trojan threats, and algorithmic- and circuit-level countermeasures for attacks based on power, timing, fault, cache, and scan chain analysis. Gain a comprehensive understanding of hardware security from fundamentals to practical applications.
Learn to analyze and measure risk by exploring the nature of trust and its application to cybersecurity Trust in Computer Systems and the Cloud delivers an insightful and practical new take on what it means to trust in the context of computer and network security and the impact on the emerging field of Confidential Computing. Author Mike Bursell’s experience, ranging from Chief Security Architect at Red Hat to CEO at a Confidential Computing start-up grounds the reader in fundamental concepts of trust and related ideas before discussing the more sophisticated applications of these concepts to various areas in computing. The book demonstrates in the importance of understanding and quantifying risk and draws on the social and computer sciences to explain hardware and software security, complex systems, and open source communities. It takes a detailed look at the impact of Confidential Computing on security, trust and risk and also describes the emerging concept of trust domains, which provide an alternative to standard layered security. Foundational definitions of trust from sociology and other social sciences, how they evolved, and what modern concepts of trust mean to computer professionals A comprehensive examination of the importance of systems, from open-source communities to HSMs, TPMs, and Confidential Computing with TEEs. A thorough exploration of trust domains, including explorations of communities of practice, the centralization of control and policies, and monitoring Perfect for security architects at the CISSP level or higher, Trust in Computer Systems and the Cloud is also an indispensable addition to the libraries of system architects, security system engineers, and master’s students in software architecture and security.
This book, for the first time, provides comprehensive coverage on malicious modification of electronic hardware, also known as, hardware Trojan attacks, highlighting the evolution of the threat, different attack modalities, the challenges, and diverse array of defense approaches. It debunks the myths associated with hardware Trojan attacks and presents practical attack space in the scope of current business models and practices. It covers the threat of hardware Trojan attacks for all attack surfaces; presents attack models, types and scenarios; discusses trust metrics; presents different forms of protection approaches – both proactive and reactive; provides insight on current industrial practices; and finally, describes emerging attack modes, defenses and future research pathways.
This book presents a new threat modelling approach that specifically targets the hardware supply chain, covering security risks throughout the lifecycle of an electronic system. The authors present a case study on a new type of security attack, which combines two forms of attack mechanisms from two different stages of the IC supply chain. More specifically, this attack targets the newly developed, light cipher (Ascon) and demonstrates how it can be broken easily, when its implementation is compromised with a hardware Trojan. This book also discusses emerging countermeasures, including anti-counterfeit design techniques for resources constrained devices and anomaly detection methods for embedded systems.
"This book is a must have resource guide for anyone who wants to ... implement TXT within their environments. I wish we had this guide when our engineering teams were implementing TXT on our solution platforms!” John McAuley,EMC Corporation "This book details innovative technology that provides significant benefit to both the cloud consumer and the cloud provider when working to meet the ever increasing requirements of trust and control in the cloud.” Alex Rodriguez, Expedient Data Centers "This book is an invaluable reference for understanding enhanced server security, and how to deploy and leverage computing environment trust to reduce supply chain risk.” Pete Nicoletti. Virtustream Inc. Intel® Trusted Execution Technology (Intel TXT) is a new security technology that started appearing on Intel server platforms in 2010. This book explains Intel Trusted Execution Technology for Servers, its purpose, application, advantages, and limitations. This book guides the server administrator / datacenter manager in enabling the technology as well as establishing a launch control policy that he can use to customize the server’s boot process to fit the datacenter’s requirements. This book explains how the OS (typically a Virtual Machine Monitor or Hypervisor) and supporting software can build on the secure facilities afforded by Intel TXT to provide additional security features and functions. It provides examples how the datacenter can create and use trusted pools. With a foreword from Albert Caballero, the CTO at Trapezoid.
This book provides an overview of current Intellectual Property (IP) based System-on-Chip (SoC) design methodology and highlights how security of IP can be compromised at various stages in the overall SoC design-fabrication-deployment cycle. Readers will gain a comprehensive understanding of the security vulnerabilities of different types of IPs. This book would enable readers to overcome these vulnerabilities through an efficient combination of proactive countermeasures and design-for-security solutions, as well as a wide variety of IP security and trust assessment and validation techniques. This book serves as a single-source of reference for system designers and practitioners for designing secure, reliable and trustworthy SoCs.