The goal of this text is to introduce a general problem-solving approach for the beginning engineering student. Thus, Introduction to Analysis focuses on how to solve (any) kind of engineering analytical problem in a logical and systematic way. The book helps to prepare the students for such analytically oriented courses as statics, strength of materials, electrical circuits, fluid mechanics, thermodynamics, etc.
Introduction to Chemical Engineering Analysis Using Mathematica, Second Edition reviews the processes and designs used to manufacture, use, and dispose of chemical products using Mathematica, one of the most powerful mathematical software tools available for symbolic, numerical, and graphical computing. Analysis and computation are explained simultaneously. The book covers the core concepts of chemical engineering, ranging from the conservation of mass and energy to chemical kinetics. The text also shows how to use the latest version of Mathematica, from the basics of writing a few lines of code through developing entire analysis programs. This second edition has been fully revised and updated, and includes analyses of the conservation of energy, whereas the first edition focused on the conservation of mass and ordinary differential equations. - Offers a fully revised and updated new edition, extended with conservation of energy - Covers a large number of topics in chemical engineering analysis, particularly for applications to reaction systems - Includes many detailed examples - Contains updated and new worked problems at the end of the book - Written by a prominent scientist in the field
Developed for the Ultimate Introductory Engineering Course Introduction to Engineering: An Assessment and Problem-Solving Approach incorporates experiential, and problem- and activity-based instruction to engage students and empower them in their own learning. This book compiles the requirements of ABET, (the organization that accredits most US engineering, computer science, and technology programs and equivalency evaluations to international engineering programs) and integrates the educational practices of the Association of American Colleges and Universities (AAC&U). The book provides learning objectives aligned with ABET learning outcomes and AAC&U high-impact educational practices. It also identifies methods for overcoming institutional barriers and challenges to implementing assessment initiatives. The book begins with an overview of the assessment theory, presents examples of real-world applications, and includes key assessment resources throughout. In addition, the book covers six basic themes: Use of assessment to improve student learning and educational programs at both undergraduate and graduate levels Understanding and applying ABET criteria to accomplish differing program and institutional missions Illustration of evaluation/assessment activities that can assist faculty in improving undergraduate and graduate courses and programs Description of tools and methods that have been demonstrated to improve the quality of degree programs and maintain accreditation Using high-impact educational practices to maximize student learning Identification of methods for overcoming institutional barriers and challenges to implementing assessment initiative A practical guide to the field of engineering and engineering technology, Introduction to Engineering: An Assessment and Problem-Solving Approach serves as an aid to both instructor and student in developing competencies and skills required by ABET and AAC&U.
Introducing engineering students to numerical analysis and computing, this book covers a range of topics suitable for the first three years of a four year undergraduate engineering degree. The teaching of computing to engineers is hampered by the lack of suitable problems for the students to tackle, so much effort has gone into making the problems in this book realistic and relevant, while at the same time solvable for undergraduates. Taking a balanced approach to teaching computing and computer methods at the same time, this book satisfies the need to be able to use computers (using both formal languages such as Fortran and other applications such as Matlab and Microsoft Excel), and the need to be able to solve realistic engineering problems.
The theory of plasticity is a branch of solid mechanics that investigates the relationship between permanent deformation and load, and the distribution of stress and strains of materials and structures beyond their elastic limit. Engineering plasticity underpins the safety of many modern systems and structures. Realizing the full potential of materials as well as designing precise metal processing and energy absorption structures requires mastery of engineering plasticity. Introduction to Engineering Plasticity: Fundamentals with Applications in Metal Forming, Limit Analysis and Energy Absorption presents both fundamental theory on plasticity and emphasizes the latest engineering applications. The title combines theory and engineering applications of plasticity, elaborating on problem solving in real-world engineering tasks such as in metal forming, limit analysis of structures, and understanding the energy absorption of structures and materials. The five main parts of the book cover: Plastic properties of materials and their characterization; Fundamental theory in plasticity; Elastic-plastic problems and typical solutions; and Rigid-plastic problems under plane-stress conditions. This title provides students and engineers alike with the fundamentals and advanced tools needed in engineering plasticity. - Brings together plasticity theory with engineering applications and problem solving - Elaborates problem solving methods and demonstrates plasticity in various engineering fields - Covers the recent decades of research on metal forming and limit analysis - Includes energy absorption of new structures and materials where plasticity dominates analysis and design - Gives a systematic account of the theory of plasticity alongside its engineering applications
Conventional build-then-test practices are making today’s embedded, software-reliant systems unaffordable to build. In response, more than thirty leading industrial organizations have joined SAE (formerly, the Society of Automotive Engineers) to define the SAE Architecture Analysis & Design Language (AADL) AS-5506 Standard, a rigorous and extensible foundation for model-based engineering analysis practices that encompass software system design, integration, and assurance. Using AADL, you can conduct lightweight and rigorous analyses of critical real-time factors such as performance, dependability, security, and data integrity. You can integrate additional established and custom analysis/specification techniques into your engineering environment, developing a fully unified architecture model that makes it easier to build reliable systems that meet customer expectations. Model-Based Engineering with AADL is the first guide to using this new international standard to optimize your development processes. Coauthored by Peter H. Feiler, the standard’s author and technical lead, this introductory reference and tutorial is ideal for self-directed learning or classroom instruction, and is an excellent reference for practitioners, including architects, developers, integrators, validators, certifiers, first-level technical leaders, and project managers. Packed with real-world examples, it introduces all aspects of the AADL notation as part of an architecture-centric, model-based engineering approach to discovering embedded software systems problems earlier, when they cost less to solve. Throughout, the authors compare AADL to other modeling notations and approaches, while presenting the language via a complete case study: the development and analysis of a realistic example system through repeated refinement and analysis. Part One introduces both the AADL language and core Model-Based Engineering (MBE) practices, explaining basic software systems modeling and analysis in the context of an example system, and offering practical guidelines for effectively applying AADL. Part Two describes the characteristics of each AADL element, including their representations, applicability, and constraints. The Appendix includes comprehensive listings of AADL language elements, properties incorporated in the AADL standard, and a description of the book’s example system.
An engineering-oriented introduction to wave propagation by an award-winning MIT professor, with highly accessible expositions and mathematical details—many classical but others not heretofore published. A wave is a traveling disturbance or oscillation—intentional or unintentional—that usually transfers energy without a net displacement of the medium in which the energy travels. Wave propagation is any of the means by which a wave travels. This book offers an engineering-oriented introduction to wave propagation that focuses on wave propagation in one-dimensional models that are anchored by the classical wave equation. The text is written in a style that is highly accessible to undergraduates, featuring extended and repetitive expositions and displaying and explaining mathematical and physical details—many classical but others not heretofore published. The formulations are devised to provide analytical foundations for studying more advanced topics of wave propagation. After a precalculus summary of rudimentary wave propagation and an introduction of the classical wave equation, the book presents solutions for the models of systems that are dimensionally infinite, semi-infinite, and finite. Chapters typically begin with a vignette based on some aspect of wave propagation, drawing on a diverse range of topics. The book provides more than two hundred end-of-chapter problems (supplying answers to most problems requiring a numerical result or brief analytical expression). Appendixes cover equations of motion for strings, rods, and circular shafts; shear beams; and electric transmission lines.
Advanced Engineering Analysis: The Calculus of Variations and Functional Analysis with Applications in Mechanics Advanced Engineering Analysis is a textbook on modern engineering analysis, covering the calculus of variations, functional analysis, and control theory, as well as applications of these disciplines to mechanics. The book offers a brief and concise, yet complete explanation of essential theory and applications. It contains exercises with hints and solutions, ideal for self-study. Book jacket.