Linear geostatistics is a fast developing field of research and its principles are extended over other fields of activity. Tools such as the variogram and kriging are now in everyday use for estimating the mean grade of material in an area from values achieved from measured samples. Non-linear geostatistics is at the fore-front of statistical development, it has a potential application over a wide range of practical problems and is likely to occupy an important place in the statutory monitoring and control of air, water, and land pollution. This book provides a comprehensive introduction to the field for geographers and engineers.
Engineers and applied geophysicists routinely encounter interpolation and estimation problems when analysing data from field observations. Introduction to Geostatistics presents practical techniques for the estimation of spatial functions from sparse data. The author's unique approach is a synthesis of classic and geostatistical methods with a focus on the most practical linear minimum-variance estimation methods, and includes suggestions on how to test and extend the applicability of such methods. The author includes many useful methods (often not covered in other geostatistics books) such as estimating variogram parameters, evaluating the need for a variable mean, parameter estimation and model testing in complex cases (e.g. anisotropy, variable mean, and multiple variables), and using information from deterministic mathematical models. Well illustrated with exercises and worked examples taken from hydrogeology, Introduction to Geostatistics assumes no background in statistics and is suitable for graduate-level courses in earth sciences, hydrology, and environmental engineering, and also for self-study.
This fully revised third edition introduces geostatistics by emphasising the multivariate aspects for scientists, engineers and statisticians. Geostatistics offers a variety of models, methods and techniques for the analysis, estimation and display of multivariate data distributed in space or time. The text contains a brief review of statistical concepts, a detailed introduction to linear geostatistics, and an account of 3 basic methods of multivariate analysis. Applications from different areas of science, as well as exercises with solutions, are provided to help convey the general ideas. The introductory chapter has been divided into two separate sections for clarity. The final section deals with non-stationary geostatistics.
Based on a postgraduate course that has been successfully taught for over 15 years, the underlying philosophy here is to give students an in-depth understanding of the relevant theory and how to put it into practice. This involves going into the theory in more detail than most books do, and also discussing its applications. It is assumed that readers, students and professionals alike are familiar with basic probability and statistics, as well as the matrix algebra needed for solving linear systems; however, some reminders on these are given in an appendix. Exercises are integrated throughout, and the appendix contains a review of the material.
A novel, practical approach to modeling spatial uncertainty. This book deals with statistical models used to describe natural variables distributed in space or in time and space. It takes a practical, unified approach to geostatistics-integrating statistical data with physical equations and geological concepts while stressing the importance of an objective description based on empirical evidence. This unique approach facilitates realistic modeling that accounts for the complexity of natural phenomena and helps solve economic and development problems-in mining, oil exploration, environmental engineering, and other real-world situations involving spatial uncertainty. Up-to-date, comprehensive, and well-written, Geostatistics: Modeling Spatial Uncertainty explains both theory and applications, covers many useful topics, and offers a wealth of new insights for nonstatisticians and seasoned professionals alike. This volume: * Reviews the most up-to-date geostatistical methods and the types of problems they address. * Emphasizes the statistical methodologies employed in spatial estimation. * Presents simulation techniques and digital models of uncertainty. * Features more than 150 figures and many concrete examples throughout the text. * Includes extensive footnoting as well as a thorough bibliography. Geostatistics: Modeling Spatial Uncertainty is the only geostatistical book to address a broad audience in both industry and academia. An invaluable resource for geostatisticians, physicists, mining engineers, and earth science professionals such as petroleum geologists, geophysicists, and hydrogeologists, it is also an excellent supplementary text for graduate-level courses in related subjects.
This volume brings together selected contributions from geoENV 2008, the 7th International Conference on Geostatistics for Environmental Applications, held in Southampton, UK. It presents the state-of-the-art in geostatistics for the environmental sciences.
The fourth edition of the European Conference on Geostatistics for Environmental Applications (geoENV IV) took place in Barcelona, November 27-29, 2002. As a proof that there is an increasing interest in environmental issues in the geostatistical community, the conference attracted over 100 participants, mostly Europeans (up to 10 European countries were represented), but also from other countries in the world. Only 46 contributions, selected out of around 100 submitted papers, were invited to be presented orally during the conference. Additionally 30 authors were invited to present their work in poster format during a special session. All oral and poster contributors were invited to submit their work to be considered for publication in this Kluwer series. All papers underwent a reviewing process, which consisted on two reviewers for oral presentations and one reviewer for posters. The book opens with one keynote paper by Philippe Naveau. It is followed by 40 papers that correspond to those presented orally during the conference and accepted by the reviewers. These papers are classified according to their main topic. The list of topics show the diversity of the contributions and the fields of application. At the end of the book, summaries of up to 19 poster presentations are added. The geoENV conferences stress two issues, namely geostatistics and environmental applications. Thus, papers can be classified into two groups.
This book provides a practical perspective of all the processes involved in estimating mineral resources and reserves, including mine-to-mill reconciliation. It provides an integrated step-by-step explanation of processes for performing each step, including insight from academic and industry practitioners. Each chapter details a specific aspect of the estimation processes in a practical manner. It contains examples and case studies to illustrate the practical application of geostatistics in mineral resource estimation, mineral reserve conversion, and reconciliation. Features Provides a step-by-step guide with over 10,000 lines of Python code for hands-on demonstration, from start to finish, for both linear and non-linear geostatistical methods. Explains practical geostatistics processes and functionality. Simplifies explanation of mathematical /statistical concepts and application. Discusses generalised examples to aid the process steps. Reviews processes involved in the mineral resources’ estimation and ore reserve conversion. This book is intended for third-year and postgraduate students in Mineral Resources Management, Geology, Spatial Statistics, and Mining Engineering, as well as practising professionals.
The science of geostatistics is now being employed in an increasing number of disciplines in environmental sciences. This book surveys the latest applications of Geostatistics in a broad spectrum of fields including air quality, climatology, ecology, groundwater hydrology, surface hydrology, oceanography, soil contamination, epidemiology and health, natural hazards, and remote sensing.