Introduction to Deep Learning Business Applications for Developers

Introduction to Deep Learning Business Applications for Developers

Author: Armando Vieira

Publisher: Apress

Published: 2018-05-02

Total Pages: 348

ISBN-13: 1484234537

DOWNLOAD EBOOK

Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and autonomous vehicles. An Introduction to Deep Learning Business Applications for Developers covers some common DL algorithms such as content-based recommendation algorithms and natural language processing. You’ll explore examples, such as video prediction with fully convolutional neural networks (FCNN) and residual neural networks (ResNets). You will also see applications of DL for controlling robotics, exploring the DeepQ learning algorithm with Monte Carlo Tree search (used to beat humans in the game of Go), and modeling for financial risk assessment. There will also be mention of the powerful set of algorithms called Generative Adversarial Neural networks (GANs) that can be applied for image colorization, image completion, and style transfer. After reading this book you will have an overview of the exciting field of deep neural networks and an understanding of most of the major applications of deep learning. The book contains some coding examples, tricks, and insights on how to train deep learning models using the Keras framework. What You Will Learn Find out about deep learning and why it is so powerful Work with the major algorithms available to train deep learning models See the major breakthroughs in terms of applications of deep learning Run simple examples with a selection of deep learning libraries Discover the areas of impact of deep learning in business Who This Book Is For Data scientists, entrepreneurs, and business developers.


Machine Learning for Developers

Machine Learning for Developers

Author: Rodolfo Bonnin

Publisher: Packt Publishing Ltd

Published: 2017-10-26

Total Pages: 264

ISBN-13: 1786466961

DOWNLOAD EBOOK

Your one-stop guide to becoming a Machine Learning expert. About This Book Learn to develop efficient and intelligent applications by leveraging the power of Machine Learning A highly practical guide explaining the concepts of problem solving in the easiest possible manner Implement Machine Learning in the most practical way Who This Book Is For This book will appeal to any developer who wants to know what Machine Learning is and is keen to use Machine Learning to make their day-to-day apps fast, high performing, and accurate. Any developer who wants to enter the field of Machine Learning can effectively use this book as an entry point. What You Will Learn Learn the math and mechanics of Machine Learning via a developer-friendly approach Get to grips with widely used Machine Learning algorithms/techniques and how to use them to solve real problems Get a feel for advanced concepts, using popular programming frameworks. Prepare yourself and other developers for working in the new ubiquitous field of Machine Learning Get an overview of the most well known and powerful tools, to solve computing problems using Machine Learning. Get an intuitive and down-to-earth introduction to current Machine Learning areas, and apply these concepts on interesting and cutting-edge problems. In Detail Most of us have heard about the term Machine Learning, but surprisingly the question frequently asked by developers across the globe is, “How do I get started in Machine Learning?”. One reason could be attributed to the vastness of the subject area because people often get overwhelmed by the abstractness of ML and terms such as regression, supervised learning, probability density function, and so on. This book is a systematic guide teaching you how to implement various Machine Learning techniques and their day-to-day application and development. You will start with the very basics of data and mathematical models in easy-to-follow language that you are familiar with; you will feel at home while implementing the examples. The book will introduce you to various libraries and frameworks used in the world of Machine Learning, and then, without wasting any time, you will get to the point and implement Regression, Clustering, classification, Neural networks, and more with fun examples. As you get to grips with the techniques, you'll learn to implement those concepts to solve real-world scenarios for ML applications such as image analysis, Natural Language processing, and anomaly detections of time series data. By the end of the book, you will have learned various ML techniques to develop more efficient and intelligent applications. Style and approach This book gives you a glimpse of Machine Learning Models and the application of models at scale using clustering, classification, regression and reinforcement learning with fun examples. Hands-on examples will be presented to understand the power of problem solving with Machine Learning and Advanced architectures, software installation, and configuration.


Modern Deep Learning Design and Application Development

Modern Deep Learning Design and Application Development

Author: Andre Ye

Publisher: Apress

Published: 2021-11-28

Total Pages: 451

ISBN-13: 9781484274125

DOWNLOAD EBOOK

Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking. You’ll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, you’ll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. You’ll learn not only to understand and apply methods successfully but to think critically about it. Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to today’s difficult problems. What You’ll Learn Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization. Compress deep learning models while maintaining performance. Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them. Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches. Who This Book Is For Data scientists with some familiarity with deep learning to deep learning engineers seeking structured inspiration and direction on their next project. Developers interested in harnessing modern deep learning methods to solve a variety of difficult problems.


Deep Learning Illustrated

Deep Learning Illustrated

Author: Jon Krohn

Publisher: Addison-Wesley Professional

Published: 2019-08-05

Total Pages: 725

ISBN-13: 0135121728

DOWNLOAD EBOOK

"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.


Building Machine Learning Powered Applications

Building Machine Learning Powered Applications

Author: Emmanuel Ameisen

Publisher: "O'Reilly Media, Inc."

Published: 2020-01-21

Total Pages: 243

ISBN-13: 1492045063

DOWNLOAD EBOOK

Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you’ll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step. Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies. This book will help you: Define your product goal and set up a machine learning problem Build your first end-to-end pipeline quickly and acquire an initial dataset Train and evaluate your ML models and address performance bottlenecks Deploy and monitor your models in a production environment


Machine Learning for Business

Machine Learning for Business

Author: Doug Hudgeon

Publisher: Simon and Schuster

Published: 2019-12-24

Total Pages: 410

ISBN-13: 1638353972

DOWNLOAD EBOOK

Summary Imagine predicting which customers are thinking about switching to a competitor or flagging potential process failures before they happen Think about the benefits of forecasting tedious business processes and back-office tasks Envision quickly gauging customer sentiment from social media content (even large volumes of it). Consider the competitive advantage of making decisions when you know the most likely future events Machine learning can deliver these and other advantages to your business, and it’s never been easier to get started! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Machine learning can deliver huge benefits for everyday business tasks. With some guidance, you can get those big wins yourself without complex math or highly paid consultants! If you can crunch numbers in Excel, you can use modern ML services to efficiently direct marketing dollars, identify and keep your best customers, and optimize back office processes. This book shows you how. About the book Machine Learning for Business teaches business-oriented machine learning techniques you can do yourself. Concentrating on practical topics like customer retention, forecasting, and back office processes, you’ll work through six projects that help you form an ML-for-business mindset. To guarantee your success, you’ll use the Amazon SageMaker ML service, which makes it a snap to turn your questions into results. What's inside Identifying tasks suited to machine learning Automating back office processes Using open source and cloud-based tools Relevant case studies About the reader For technically inclined business professionals or business application developers. About the author Doug Hudgeon and Richard Nichol specialize in maximizing the value of business data through AI and machine learning for companies of any size. Table of Contents: PART 1 MACHINE LEARNING FOR BUSINESS 1 ¦ How machine learning applies to your business PART 2 SIX SCENARIOS: MACHINE LEARNING FOR BUSINESS 2 ¦ Should you send a purchase order to a technical approver? 3 ¦ Should you call a customer because they are at risk of churning? 4 ¦ Should an incident be escalated to your support team? 5 ¦ Should you question an invoice sent by a supplier? 6 ¦ Forecasting your company’s monthly power usage 7 ¦ Improving your company’s monthly power usage forecast PART 3 MOVING MACHINE LEARNING INTO PRODUCTION 8 ¦ Serving predictions over the web 9 ¦ Case studies


Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Author: Segall, Richard S.

Publisher: IGI Global

Published: 2022-01-07

Total Pages: 394

ISBN-13: 1799884570

DOWNLOAD EBOOK

During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.


Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2

Author: M. Arif Wani

Publisher: Springer

Published: 2020-12-14

Total Pages: 300

ISBN-13: 9789811567582

DOWNLOAD EBOOK

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.


Artificial Intelligence with Python

Artificial Intelligence with Python

Author: Prateek Joshi

Publisher: Packt Publishing Ltd

Published: 2017-01-27

Total Pages: 437

ISBN-13: 1786469677

DOWNLOAD EBOOK

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.


An Introduction to Machine Learning

An Introduction to Machine Learning

Author: Miroslav Kubat

Publisher: Springer

Published: 2017-08-31

Total Pages: 348

ISBN-13: 3319639137

DOWNLOAD EBOOK

This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.