Introduction to Concurrency Theory

Introduction to Concurrency Theory

Author: Roberto Gorrieri

Publisher: Springer

Published: 2015-09-02

Total Pages: 341

ISBN-13: 3319214918

DOWNLOAD EBOOK

This book presents the fundamentals of concurrency theory with clarity and rigor. The authors start with the semantic structure, namely labelled transition systems, which provides us with the means and the tools to express processes, to compose them, and to prove properties they enjoy. The rest of the book relies on Milner's Calculus of Communicating Systems, tailored versions of which are used to study various notions of equality between systems, and to investigate in detail the expressive power of the models considered. The authors proceed from very basic results to increasingly complex issues, with many examples and exercises that help to reveal the many subtleties of the topic. The book is suitable for advanced undergraduate and graduate students in computer science and engineering, and scientists engaged with theories of concurrency.


Introduction to Concurrency Theory

Introduction to Concurrency Theory

Author: Roberto Gorrieri

Publisher: Springer

Published: 2016-10-22

Total Pages: 334

ISBN-13: 9783319366388

DOWNLOAD EBOOK

This book presents the fundamentals of concurrency theory with clarity and rigor. The authors start with the semantic structure, namely labelled transition systems, which provides us with the means and the tools to express processes, to compose them, and to prove properties they enjoy. The rest of the book relies on Milner's Calculus of Communicating Systems, tailored versions of which are used to study various notions of equality between systems, and to investigate in detail the expressive power of the models considered. The authors proceed from very basic results to increasingly complex issues, with many examples and exercises that help to reveal the many subtleties of the topic. The book is suitable for advanced undergraduate and graduate students in computer science and engineering, and scientists engaged with theories of concurrency.


The Theory and Practice of Concurrency

The Theory and Practice of Concurrency

Author: A. W. Roscoe

Publisher: Prentice Hall PTR

Published: 1998

Total Pages: 596

ISBN-13:

DOWNLOAD EBOOK

Since Professor Hoare's book Communicating Sequential Processes was first published, his notation has been extensively used for teaching and applying concurrency theory. The most significant development since then has been the emergence of tools to support the teaching and industrial application of CSP. This has turned CSP from a notation used mainly for toy examples into one which can and does support the description of industrial-sized problems. In order to understand the tools you need a good grasp of the fundamental concepts of CSP, therefore the book is, in the first instance, a text on the principles of the language rather than being a manual on how to apply its tools. The Theory and Practice of Concurrency is divided into 3 sections. Part I is a foundation course on CSP, covering essentially the same material as the Hoare book, except that most of the mathematical theory has been omitted. It introduces the ideas behind the operational, denotational and algebraic models of CSP. Parts II and III go into more detail about the theory and practice of CSP. Either of them would make a one semester course or though they are independent of each other. This book assumes no mathematical knowledge except for a basic understanding of sets, sequences and functions. Part I and III use no sophisticated mathematics, and the extra amount needed for Part II is contained within Appendix A (which introduces the theory of partial order and metric/restriction spaces). The book brings substantial new insights into the important subjects of computer security, fault tolerance, real-time modelling, communications protocols and distributed databases. Each of these is supported by a case study and guidance on how to apply automated analysis to verify systems.


Understanding Concurrent Systems

Understanding Concurrent Systems

Author: A.W. Roscoe

Publisher: Springer Science & Business Media

Published: 2010-10-10

Total Pages: 528

ISBN-13: 1848822588

DOWNLOAD EBOOK

CSP notation has been used extensively for teaching and applying concurrency theory, ever since the publication of the text Communicating Sequential Processes by C.A.R. Hoare in 1985. Both a programming language and a specification language, the theory of CSP helps users to understand concurrent systems, and to decide whether a program meets its specification. As a member of the family of process algebras, the concepts of communication and interaction are presented in an algebraic style. An invaluable reference on the state of the art in CSP, Understanding Concurrent Systems also serves as a comprehensive introduction to the field, in addition to providing material for a number of more advanced courses. A first point of reference for anyone wanting to use CSP or learn about its theory, the book also introduces other views of concurrency, using CSP to model and explain these. The text is fully integrated with CSP-based tools such as FDR, and describes how to create new tools based on FDR. Most of the book relies on no theoretical background other than a basic knowledge of sets and sequences. Sophisticated mathematical arguments are avoided whenever possible. Topics and features: presents a comprehensive introduction to CSP; discusses the latest advances in CSP, covering topics of operational semantics, denotational models, finite observation models and infinite-behaviour models, and algebraic semantics; explores the practical application of CSP, including timed modelling, discrete modelling, parameterised verifications and the state explosion problem, and advanced topics in the use of FDR; examines the ability of CSP to describe and enable reasoning about parallel systems modelled in other paradigms; covers a broad variety of concurrent systems, including combinatorial, timed, priority-based, mobile, shared variable, statecharts, buffered and asynchronous systems; contains exercises and case studies to support the text; supplies further tools and information at the associated website: http://www.comlab.ox.ac.uk/ucs/. From undergraduate students of computer science in need of an introduction to the area, to researchers and practitioners desiring a more in-depth understanding of theory and practice of concurrent systems, this broad-ranging text/reference is essential reading for anyone interested in Hoare’s CSP.


Concurrency Theory

Concurrency Theory

Author: Howard Bowman

Publisher: Springer Science & Business Media

Published: 2005-12-21

Total Pages: 470

ISBN-13: 9781852338954

DOWNLOAD EBOOK

Intheworldweliveinconcurrencyisthenorm.Forexample,thehumanbody isamassivelyconcurrentsystem,comprisingahugenumberofcells,allsim- taneously evolving and independently engaging in their individual biological processing.Inaddition,inthebiologicalworld,trulysequentialsystemsrarely arise. However, they are more common when manmade artefacts are cons- ered. In particular, computer systems are often developed from a sequential perspective. Why is this? The simple reason is that it is easier for us to think about sequential, rather than concurrent, systems. Thus, we use sequentiality as a device to simplify the design process. However, the need for increasingly powerful, ?exible and usable computer systems mitigates against simplifying sequentiality assumptions. A good - ample of this is the all-powerful position held by the Internet, which is highly concurrent at many di?erent levels of decomposition. Thus, the modern c- puter scientist (and indeed the modern scientist in general) is forced to think aboutconcurrentsystemsandthesubtleandintricatebehaviourthatemerges from the interaction of simultaneously evolving components. Over a period of 25 years, or so, the ?eld of concurrency theory has been involved in the development of a set of mathematical techniques that can help system developers to think about and build concurrent systems. These theories are the subject matter of this book.


Concurrency in Go

Concurrency in Go

Author: Katherine Cox-Buday

Publisher: "O'Reilly Media, Inc."

Published: 2017-07-19

Total Pages: 243

ISBN-13: 1491941308

DOWNLOAD EBOOK

Concurrency can be notoriously difficult to get right, but fortunately, the Go open source programming language makes working with concurrency tractable and even easy. If you’re a developer familiar with Go, this practical book demonstrates best practices and patterns to help you incorporate concurrency into your systems. Author Katherine Cox-Buday takes you step-by-step through the process. You’ll understand how Go chooses to model concurrency, what issues arise from this model, and how you can compose primitives within this model to solve problems. Learn the skills and tooling you need to confidently write and implement concurrent systems of any size. Understand how Go addresses fundamental problems that make concurrency difficult to do correctly Learn the key differences between concurrency and parallelism Dig into the syntax of Go’s memory synchronization primitives Form patterns with these primitives to write maintainable concurrent code Compose patterns into a series of practices that enable you to write large, distributed systems that scale Learn the sophistication behind goroutines and how Go’s runtime stitches everything together


Java Concurrency in Practice

Java Concurrency in Practice

Author: Tim Peierls

Publisher: Pearson Education

Published: 2006-05-09

Total Pages: 428

ISBN-13: 0132702258

DOWNLOAD EBOOK

Threads are a fundamental part of the Java platform. As multicore processors become the norm, using concurrency effectively becomes essential for building high-performance applications. Java SE 5 and 6 are a huge step forward for the development of concurrent applications, with improvements to the Java Virtual Machine to support high-performance, highly scalable concurrent classes and a rich set of new concurrency building blocks. In Java Concurrency in Practice, the creators of these new facilities explain not only how they work and how to use them, but also the motivation and design patterns behind them. However, developing, testing, and debugging multithreaded programs can still be very difficult; it is all too easy to create concurrent programs that appear to work, but fail when it matters most: in production, under heavy load. Java Concurrency in Practice arms readers with both the theoretical underpinnings and concrete techniques for building reliable, scalable, maintainable concurrent applications. Rather than simply offering an inventory of concurrency APIs and mechanisms, it provides design rules, patterns, and mental models that make it easier to build concurrent programs that are both correct and performant. This book covers: Basic concepts of concurrency and thread safety Techniques for building and composing thread-safe classes Using the concurrency building blocks in java.util.concurrent Performance optimization dos and don'ts Testing concurrent programs Advanced topics such as atomic variables, nonblocking algorithms, and the Java Memory Model


Concurrency

Concurrency

Author: Dahlia Malkhi

Publisher: Morgan & Claypool

Published: 2019-09-16

Total Pages: 367

ISBN-13: 1450372732

DOWNLOAD EBOOK

This book is a celebration of Leslie Lamport's work on concurrency, interwoven in four-and-a-half decades of an evolving industry: from the introduction of the first personal computer to an era when parallel and distributed multiprocessors are abundant. His works lay formal foundations for concurrent computations executed by interconnected computers. Some of the algorithms have become standard engineering practice for fault tolerant distributed computing – distributed systems that continue to function correctly despite failures of individual components. He also developed a substantial body of work on the formal specification and verification of concurrent systems, and has contributed to the development of automated tools applying these methods. Part I consists of technical chapters of the book and a biography. The technical chapters of this book present a retrospective on Lamport's original ideas from experts in the field. Through this lens, it portrays their long-lasting impact. The chapters cover timeless notions Lamport introduced: the Bakery algorithm, atomic shared registers and sequential consistency; causality and logical time; Byzantine Agreement; state machine replication and Paxos; temporal logic of actions (TLA). The professional biography tells of Lamport's career, providing the context in which his work arose and broke new grounds, and discusses LaTeX – perhaps Lamport’s most influential contribution outside the field of concurrency. This chapter gives a voice to the people behind the achievements, notably Lamport himself, and additionally the colleagues around him, who inspired, collaborated, and helped him drive worldwide impact. Part II consists of a selection of Leslie Lamport's most influential papers. This book touches on a lifetime of contributions by Leslie Lamport to the field of concurrency and on the extensive influence he had on people working in the field. It will be of value to historians of science, and to researchers and students who work in the area of concurrency and who are interested to read about the work of one of the most influential researchers in this field.


Transactional Information Systems

Transactional Information Systems

Author: Gerhard Weikum

Publisher: Morgan Kaufmann

Published: 2002

Total Pages: 881

ISBN-13: 1558605088

DOWNLOAD EBOOK

This book describes the theory, algorithms, and practical implementation techniques behind transaction processing in information technology systems.


Concurrency Theory

Concurrency Theory

Author: Howard Bowman

Publisher: Springer Science & Business Media

Published: 2006-02-28

Total Pages: 444

ISBN-13: 1846283361

DOWNLOAD EBOOK

Intheworldweliveinconcurrencyisthenorm.Forexample,thehumanbody isamassivelyconcurrentsystem,comprisingahugenumberofcells,allsim- taneously evolving and independently engaging in their individual biological processing.Inaddition,inthebiologicalworld,trulysequentialsystemsrarely arise. However, they are more common when manmade artefacts are cons- ered. In particular, computer systems are often developed from a sequential perspective. Why is this? The simple reason is that it is easier for us to think about sequential, rather than concurrent, systems. Thus, we use sequentiality as a device to simplify the design process. However, the need for increasingly powerful, ?exible and usable computer systems mitigates against simplifying sequentiality assumptions. A good - ample of this is the all-powerful position held by the Internet, which is highly concurrent at many di?erent levels of decomposition. Thus, the modern c- puter scientist (and indeed the modern scientist in general) is forced to think aboutconcurrentsystemsandthesubtleandintricatebehaviourthatemerges from the interaction of simultaneously evolving components. Over a period of 25 years, or so, the ?eld of concurrency theory has been involved in the development of a set of mathematical techniques that can help system developers to think about and build concurrent systems. These theories are the subject matter of this book.