Introduction to Coding and Information Theory

Introduction to Coding and Information Theory

Author: Steven Roman

Publisher: Springer Science & Business Media

Published: 1996-11-26

Total Pages: 344

ISBN-13: 9780387947044

DOWNLOAD EBOOK

This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.


Coding and Information Theory

Coding and Information Theory

Author: Richard Wesley Hamming

Publisher: Prentice Hall

Published: 1986

Total Pages: 280

ISBN-13:

DOWNLOAD EBOOK

Focusing on both theory and practical applications, this volume combines in a natural way the two major aspects of information representation--representation for storage (coding theory) and representation for transmission (information theory).


Coding and Information Theory

Coding and Information Theory

Author: Steven Roman

Publisher: Springer Science & Business Media

Published: 1992-06-04

Total Pages: 520

ISBN-13: 9780387978123

DOWNLOAD EBOOK

This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.


Information and Coding Theory

Information and Coding Theory

Author: Gareth A. Jones

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 217

ISBN-13: 1447103610

DOWNLOAD EBOOK

This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon’s Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises.


Information Theory and Coding

Information Theory and Coding

Author: Dr. J. S. Chitode

Publisher: Technical Publications

Published: 2021-01-01

Total Pages: 534

ISBN-13: 9333223975

DOWNLOAD EBOOK

Various measures of information are discussed in first chapter. Information rate, entropy and mark off models are presented. Second and third chapter deals with source coding. Shannon's encoding algorithm, discrete communication channels, mutual information, Shannon's first theorem are also presented. Huffman coding and Shannon-Fano coding is also discussed. Continuous channels are discussed in fourth chapter. Channel coding theorem and channel capacity theorems are also presented. Block codes are discussed in chapter fifth, sixth and seventh. Linear block codes, Hamming codes, syndrome decoding is presented in detail. Structure and properties of cyclic codes, encoding and syndrome decoding for cyclic codes is also discussed. Additional cyclic codes such as RS codes, Golay codes, burst error correction is also discussed. Last chapter presents convolutional codes. Time domain, transform domain approach, code tree, code trellis, state diagram, Viterbi decoding is discussed in detail.


Introduction to Coding Theory

Introduction to Coding Theory

Author: Juergen Bierbrauer

Publisher: Chapman & Hall/CRC

Published: 2017

Total Pages: 0

ISBN-13: 9781482299809

DOWNLOAD EBOOK

This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.