- A unique exposition of the foundations of the quantum theory of black holes including the impact of string theory, the idea of black hole complementarily and the holographic principle bull; Aims to educate the physicist or student of physics who is not an expert on string theory, on the revolution that has grown out of black hole physics and string theory
These three lectures cover a certain aspect of complexity and black holes, namely the relation to the second law of thermodynamics. The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes. Prof. L. Susskind discusses how firewalls are related to periods of non-increasing complexity which typically only occur after an exponentially long time. The final lecture is about the thermodynamics of complexity, and “uncomplexity” as a resource for doing computational work. The author explains the remarkable power of “one clean qubit,” in both computational terms and in space-time terms. This book is intended for graduate students and researchers who want to take the first steps towards the mysteries of black holes and their complexity.
What happens when something is sucked into a black hole? Does it disappear? Three decades ago, a young physicist named Stephen Hawking claimed it did, and in doing so put at risk everything we know about physics and the fundamental laws of the universe. Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics. The Black Hole War is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality -- effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space. A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.
Through reading this book, you will have a better understanding on the Holographic Universe and your ability to have experiences in the Holographic Universe increases. Through keeping an open, clear mind (as you read), you can experience what the author has experienced and you will be able to understand what the author is explaining. Instead of just reading the words, read it with the intent to understand the depths of what is being explained. Keep contemplating on it until you experience and understand what is being said about the Holographic Universe. Keep reading the book again and again until you have understood it so that your ability to have experiences in the Holographic Universe increases. In this book, the explanations on the Holographic Universe are based on: 1. the guidance from God, 2. the knowledge of the Brahma Kumaris, 3. Quantum Mechanics (nothing in this book is contrary to quantum mechanics), 4. research, 5. experiences of the author, 6. the knowledge on the chakras and aura, 7. the ancient Hindu texts, etc. There are explanations, in this book, about: 1. the various divisions and nature of the Holographic Universe. 2. how everything happens as per the World Drama (Akashic Records). 3. how people live in two kinds of worlds, the Real World and the Holographic World, at the same time. 4. the Holographic Film of the Hologram which we are participating in. 5. how various kinds of worlds exist. 6. how the quantum energies materialise the physical bodies and physical world through the Holographic Universe. 7. how the creation process takes place through the vortices and chakras. 8. Near Death Experiences 9. the Cosmic Consciousness. 10. how subtle dimensions, holographic bodies and subtle bodies are created. 11. how the aura is used during experiences. 12. how quantum energies of different densities materialise a different kind of Real World for us to live in. 13. how the Holographic Universe changes when the world transforms. 14. the meditation and knowledge of the Brahma Kumaris.
Based on lectures given in honour of Stephen Hawking's sixtieth birthday, this book comprises contributions from some of the world's leading theoretical physicists. It begins with a section containing chapters by successful scientific popularisers, bringing to life both Hawking's work and other exciting developments in physics. The book then goes on to provide a critical evaluation of advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. As well as providing a fascinating overview of the wide variety of subject areas to which Stephen Hawking has contributed, this book represents an important assessment of prospects for the future of fundamental physics and cosmology.
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
In his first book ever, the father of string theory reinvents the world's concept of the known universe and man's unique place within it. Line drawings.
The essential introduction to modern string theory—now fully expanded and revised String Theory in a Nutshell is the definitive introduction to modern string theory. Written by one of the world’s leading authorities on the subject, this concise and accessible book starts with basic definitions and guides readers from classic topics to the most exciting frontiers of research today. It covers perturbative string theory, the unity of string interactions, black holes and their microscopic entropy, the AdS/CFT correspondence and its applications, matrix model tools for string theory, and more. It also includes 600 exercises and serves as a self-contained guide to the literature. This fully updated edition features an entirely new chapter on flux compactifications in string theory, and the chapter on AdS/CFT has been substantially expanded by adding many applications to diverse topics. In addition, the discussion of conformal field theory has been extensively revised to make it more student-friendly. The essential one-volume reference for students and researchers in theoretical high-energy physics Now fully expanded and revised Provides expanded coverage of AdS/CFT and its applications, namely the holographic renormalization group, holographic theories for Yang-Mills and QCD, nonequilibrium thermal physics, finite density physics, and entanglement entropy Ideal for mathematicians and physicists specializing in theoretical cosmology, QCD, and novel approaches to condensed matter systems An online illustration package is available to professors
Providing a pedagogical introduction to the rapidly developing field of AdS/CFT correspondence, this is one of the first texts to provide an accessible introduction to all the necessary concepts needed to engage with the methods, tools and applications of AdS/CFT. Without assuming anything beyond an introductory course in quantum field theory, it begins by guiding the reader through the basic concepts of field theory and gauge theory, general relativity, supersymmetry, supergravity, string theory and conformal field theory, before moving on to give a clear and rigorous account of AdS/CFT correspondence. The final section discusses the more specialised applications, including QCD, quark-gluon plasma and condensed matter. This book is self-contained and learner-focused, featuring numerous exercises and examples. It is essential reading for both students and researchers across the fields of particle, nuclear and condensed matter physics.