This book is designed to introduce the reader to the fundamental information necessary for work in the clinical setting, supporting the technology used in patient care. Beginning biomedical equipment technologists can use this book to obtain a working vocabulary and elementary knowledge of the industry. Content is presented through the inclusion of a wide variety of medical instrumentation, with an emphasis on generic devices and classifications; individual manufacturers are explained only when the market is dominated by a particular unit. Designed for the reader with a fundamental understanding of anatomy, physiology, and medical terminology appropriate for their role in the health care field and assumes the reader's understanding of electronic concepts, including voltage, current, resistance, impedance, analog and digital signals, and sensors. The material covered will assist the reader in the development of his or her role as a knowledgeable and effective member of the patient care team.
Modern Practical Healthcare Issues in Biomedical Instrumentation describes the designs, applications and principles of several medical devices used in hospitals and at home. The book presents practical devices that can potentially be used for healthcare purposes. Sections cover the use of biosensors to monitor the physiological properties of the human body, focusing on devices used to evaluate, measure and manipulate the biological system, and highlighting practical devices that can potentially be used for healthcare purposes. It is an excellent resource for undergraduate, graduate and post-graduate students of biomedical engineering. - Focuses on devices used to evaluate, measure and manipulate the biological system - Describes the designs, applications and principles of several medical devices used in hospitals and at home - Discusses various application and how their usage will help to aid health care delivery
Introduction to Biomedical Instrumentation and Its Applications delivers a detailed overview of the various instruments used in the biomedical and healthcare domain, focusing on both their main features and their uses in the medical industry. Each chapter focuses on biomedical instrumentation in a different medical discipline, covering a range of different topics including radiological devices, instruments used for blood analysis, defibrillators, ventilators, nerve stimulators and baby incubators. This book seeks to provide the reader with in-depth knowledge on biomedical devices, thus enabling them to contribute to the future development of instruments in the healthcare domain. This is a concise handbook that will be useful to students, researchers and practitioners involved in biomedical engineering, as well as doctors and clinicians who specialize in areas such as cardiology, anesthesiology and physiotherapy. - Provides detailed insights into a variety of biomedical instruments for use in different medical areas such as radiology, cardiology and physiotherapy - Considers the advantages, disadvantages and future developments of various biomedical instruments - Equips researchers with an understanding of the working principles of various instruments, thus preparing them for the future development and design of innovative devices in the health domain - Contains various mathematical derivations and numerical data that connect theory with the practical environment - Features a section on patient safety and infection control in relation to the use of biomedical instruments
Primarily intended as a textbook for the undergraduate students of Instrumentation, Electronics, and Electrical Engineering for a course in biomedical instrumentation as part of their programmes. The book presents a detailed introduction to the fundamental principles and applications of biomedical instrumentation. The book familiarizes the students of engineering with the basics of medical science by explaining the relevant medical terminology in simple language. Without presuming prior knowledge of human physiology, it helps the students to develop a substantial understanding of the complex processes of functioning of the human body. The mechanisms of all major biomedical instrumentation systems—ECG, EEG, CT scanner, MRI machine, pacemaker, dialysis machine, ultrasound imaging machine, laser lithotripsy machine, defibrillator, and plethysmograph—are explained comprehensively. A large number of illustrations are provided throughout the book to aid in the development of practical understanding of the subject matter. Chapter-end review questions help in testing the students’ grasp of the underlying concepts. The second edition of the book incorporates detailed explanations to action potential supported with illustrative example and improved figure, ionic action of silver-silver chloride electrode, and isolation amplifiers. It also includes mathematical treatment to ultrasonic transit time flowmeters. A method to find approximate axis of heart and image reconstruction in CT scan is explained with simple examples. A topic on MRI has been simplified for clear understanding and a new section on Positron Emission Tomography (PET), which is an emerging tool for cancer detection, has been introduced.
An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handling, and utilization of the instruments; current, voltage, resistance, and meters; diodes and transistors; power supply; and storage and processing of data. The text will be invaluable to medical electronics students who need a reference material to help them learn how to use competently and confidently the equipment that are important in their field.
This book introduces the basic mathematical tools used to describe noise and its propagation through linear systems and provides a basic description of the improvement of signal-to-noise ratio by signal averaging and linear filtering. The text also demonstrates how op amps are the keystone of modern analog signal conditioning systems design, and il
Encyclopedia of Medical Devices and Instrumentation John G. Webster, Editor-in-Chief This comprehensive encyclopedia, the work of more than 400 contributors, includes 266 articles on devices and instrumentation that are currently or likely to be useful in medicine and biomedical engineering. The four volumes include 3,022 pages of text that concentrates on how technology assists the branches of medicine. The articles emphasize the contributions of engineering, physics, and computers to each of the general areas of medicine, and are designed not for peers, but rather for workers from related fields who wish to take a first look at what is important in the subject. Highly recommended for university biomedical engineering and medical reference collections, and for anyone with a science background or an interest in technology. Includes a 78-page index, cross-references, and high-quality diagrams, illustrations, and photographs. 1988 (0 471-82936-6) 4-Volume Set Introduction to Radiological Physics and Radiation Dosimetry Frank Herbert Attix provides complete and useful coverage of radiological physics. Unlike most treatments of the subject, it encompasses radiation dosimetry in general, rather than discussing only its applications in medical or health physics. The treatment flows logically from basics to more advanced topics. Coverage extends through radiation interactions to cavity theories and dosimetry of X-rays, charged particles, and neutrons. Several important subjects that have never been thoroughly analyzed in the literature are treated here in detail, such as charged-particle equilibrium, broad-beam attenuation and geometries, derivation of the Kramers X-ray spectrum, and the reciprocity theorem, which is also extended to the nonisotropic homogeneous case. 1986 (0 471-01146-0) 607 pp. Medical Physics John R. Cameron and James G. Skofronick This detailed text describes medical physics in a simple, straightforward manner. It discusses the physical principles involved in the control and functon of organs and organ systems such as the eyes, ears, lungs, heart, and circulatory system. There is also coverage of the application of mechanics, heat, light, sound, electricity, and magnetism to medicine, particularly of the various instruments used for the diagnosis and treatment of disease. 1978 (0 471-13131-8) 615 pp.
Noninvasive medical diagnosis (NIMD) is as old as medical practice itself. From the earliest healers' observations of odors, skin color, and breath sounds to today's wealth of technologies, the basics remain the same and keep the role of NIMD essential to effective medical care. Noninvasive Instrumentation and Measurement in Medical Diagnos
This short book provides basic information about bioinstrumentation and electric circuit theory. Many biomedical instruments use a transducer or sensor to convert a signal created by the body into an electric signal. Our goal here is to develop expertise in electric circuit theory applied to bioinstrumentation. We begin with a description of variables used in circuit theory, charge, current, voltage, power and energy. Next, Kirchhoff's current and voltage laws are introduced, followed by resistance, simplifications of resistive circuits and voltage and current calculations. Circuit analysis techniques are then presented, followed by inductance and capacitance, and solutions of circuits using the differential equation method. Finally, the operational amplifier and time varying signals are introduced. This lecture is written for a student or researcher or engineer who has completed the first two years of an engineering program (i.e., 3 semesters of calculus and differential equations). A considerable effort has been made to develop the theory in a logical manner—developing special mathematical skills as needed. At the end of the short book is a wide selection of problems, ranging from simple to complex.