Introducing Mathematics

Introducing Mathematics

Author: Jerry Ravetz

Publisher: Icon Books Ltd

Published: 2015-03-14

Total Pages: 449

ISBN-13: 184831969X

DOWNLOAD EBOOK

What is mathematics, and why is it such a mystery to so many people? Mathematics is the greatest creation of human intelligence. It affects us all. We depend on it in our daily lives, and yet many of the tools of mathematics, such as geometry, algebra and trigonometry, are descended from ancient or non-Western civilizations. Introducing Mathematics traces the story of mathematics from the ancient world to modern times, describing the great discoveries and providing an accessible introduction to such topics as number-systems, geometry and algebra, the calculus, the theory of the infinite, statistical reasoning and chaos theory. It shows how the history of mathematics has seen progress and paradox go hand in hand - and how this is still happening today.


Introducing Pure Mathematics

Introducing Pure Mathematics

Author: Robert Smedley

Publisher: Oxford University Press

Published: 2001-02

Total Pages: 568

ISBN-13: 9780199148035

DOWNLOAD EBOOK

This textbook covers the requirements of students taking pure mathematics as part of a single-maths A-level exam. It assumes a starting point of the equivalent of Level 7 in the National Curriculum or GCSE Grade B/C.


An Introduction to Mathematics

An Introduction to Mathematics

Author: Alfred North Whitehead

Publisher: Courier Dover Publications

Published: 2017-05-04

Total Pages: 177

ISBN-13: 0486821382

DOWNLOAD EBOOK

Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.


A Programmer's Introduction to Mathematics

A Programmer's Introduction to Mathematics

Author: Jeremy Kun

Publisher:

Published: 2020-05-17

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.


Calculus: A Complete Introduction

Calculus: A Complete Introduction

Author: Hugh Neill

Publisher: Teach Yourself

Published: 2013-05-31

Total Pages: 416

ISBN-13: 1444191136

DOWNLOAD EBOOK

Calculus: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using calculus. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all areas of calculus, including functions, gradients, rates of change, differentiation, exponential and logarithmic functions and integration. Everything you will need to know is here in one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.


Discrete Mathematics

Discrete Mathematics

Author: Oscar Levin

Publisher: Createspace Independent Publishing Platform

Published: 2016-08-16

Total Pages: 342

ISBN-13: 9781534970748

DOWNLOAD EBOOK

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.


A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics

Author: Daniel Rosenthal

Publisher: Springer

Published: 2014-07-03

Total Pages: 171

ISBN-13: 3319056549

DOWNLOAD EBOOK

Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.


Introducing Philosophy of Mathematics

Introducing Philosophy of Mathematics

Author: Michele Friend

Publisher: Routledge

Published: 2014-12-05

Total Pages: 294

ISBN-13: 1317493788

DOWNLOAD EBOOK

What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.