Intrinsically Motivated Learning in Natural and Artificial Systems

Intrinsically Motivated Learning in Natural and Artificial Systems

Author: Gianluca Baldassarre

Publisher: Springer Science & Business Media

Published: 2013-03-29

Total Pages: 453

ISBN-13: 3642323758

DOWNLOAD EBOOK

It has become clear to researchers in robotics and adaptive behaviour that current approaches are yielding systems with limited autonomy and capacity for self-improvement. To learn autonomously and in a cumulative fashion is one of the hallmarks of intelligence, and we know that higher mammals engage in exploratory activities that are not directed to pursue goals of immediate relevance for survival and reproduction but are instead driven by intrinsic motivations such as curiosity, interest in novel stimuli or surprising events, and interest in learning new behaviours. The adaptive value of such intrinsically motivated activities lies in the fact that they allow the cumulative acquisition of knowledge and skills that can be used later to accomplish fitness-enhancing goals. Intrinsic motivations continue during adulthood, and in humans they underlie lifelong learning, artistic creativity, and scientific discovery, while they are also the basis for processes that strongly affect human well-being, such as the sense of competence, self-determination, and self-esteem. This book has two aims: to present the state of the art in research on intrinsically motivated learning, and to identify the related scientific and technological open challenges and most promising research directions. The book introduces the concept of intrinsic motivation in artificial systems, reviews the relevant literature, offers insights from the neural and behavioural sciences, and presents novel tools for research. The book is organized into six parts: the chapters in Part I give general overviews on the concept of intrinsic motivations, their function, and possible mechanisms for implementing them; Parts II, III, and IV focus on three classes of intrinsic motivation mechanisms, those based on predictors, on novelty, and on competence; Part V discusses mechanisms that are complementary to intrinsic motivations; and Part VI introduces tools and experimental frameworks for investigating intrinsic motivations. The contributing authors are among the pioneers carrying out fundamental work on this topic, drawn from related disciplines such as artificial intelligence, robotics, artificial life, evolution, machine learning, developmental psychology, cognitive science, and neuroscience. The book will be of value to graduate students and academic researchers in these domains, and to engineers engaged with the design of autonomous, adaptive robots. The contributing authors are among the pioneers carrying out fundamental work on this topic, drawn from related disciplines such as artificial intelligence, robotics, artificial life, evolution, machine learning, developmental psychology, cognitive science, and neuroscience. The book will be of value to graduate students and academic researchers in these domains, and to engineers engaged with the design of autonomous, adaptive robots.


TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Author: Todd Hester

Publisher: Springer

Published: 2013-06-22

Total Pages: 170

ISBN-13: 3319011685

DOWNLOAD EBOOK

This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.


Neuromorphic and Brain-Based Robots

Neuromorphic and Brain-Based Robots

Author: Jeffrey L. Krichmar

Publisher: Cambridge University Press

Published: 2011-09-01

Total Pages: 377

ISBN-13: 1139498576

DOWNLOAD EBOOK

Neuromorphic and brain-based robotics have enormous potential for furthering our understanding of the brain. By embodying models of the brain on robotic platforms, researchers can investigate the roots of biological intelligence and work towards the development of truly intelligent machines. This book provides a broad introduction to this groundbreaking area for researchers from a wide range of fields, from engineering to neuroscience. Case studies explore how robots are being used in current research, including a whisker system that allows a robot to sense its environment and neurally inspired navigation systems that show impressive mapping results. Looking to the future, several chapters consider the development of cognitive, or even conscious robots that display the adaptability and intelligence of biological organisms. Finally, the ethical implications of intelligent robots are explored, from morality and Asimov's three laws to the question of whether robots have rights.


Adaptive and Intelligent Systems

Adaptive and Intelligent Systems

Author: Abdelhamid Bouchachia

Publisher: Springer Science & Business Media

Published: 2011-08-26

Total Pages: 441

ISBN-13: 3642238564

DOWNLOAD EBOOK

This book constitutes the proceedings of the International Conference on Adaptive and Intelligent Systems, ICAIS 2011, held in Klagenfurt, Austria, in September 2011. The 36 full papers included in these proceedings together with the abstracts of 4 invited talks, were carefully reviewed and selected from 72 submissions. The contributions are organized under the following topical sections: incremental learning; adaptive system architecture; intelligent system engineering; data mining and pattern recognition; intelligent agents; and computational intelligence.


Advances in Artificial Life

Advances in Artificial Life

Author: Fernando Almeida e Costa

Publisher: Springer

Published: 2007-09-04

Total Pages: 1232

ISBN-13: 3540749136

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 9th European Conference on Artificial Life, ECAL 2007, held in Lisbon, Portugal. The 125 revised full papers cover morphogenesis and development, robotics and autonomous agents, evolutionary computation and theory, cellular automata, models of biological systems and their applications, ant colony and swarm systems, evolution of communication, simulation of social interactions, self-replication, artificial chemistry.


From Animals to Animats 9

From Animals to Animats 9

Author: Stefano Nolfi

Publisher: Springer Science & Business Media

Published: 2006-09-20

Total Pages: 869

ISBN-13: 3540386084

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 9th International Conference on Simulation of Adaptive Behavior, SAB 2006. The 35 revised full papers and 35 revised poster papers presented are organized in topical sections on the animat approach to adaptive behaviour, perception and motor control, action selection and behavioral sequences, navigation and internal world models, learning and adaptation, evolution, collective and social behaviours, applied adaptive behavior and more.


Theory and Novel Applications of Machine Learning

Theory and Novel Applications of Machine Learning

Author: Er Meng Joo

Publisher: BoD – Books on Demand

Published: 2009-01-01

Total Pages: 390

ISBN-13: 3902613556

DOWNLOAD EBOOK

Even since computers were invented, many researchers have been trying to understand how human beings learn and many interesting paradigms and approaches towards emulating human learning abilities have been proposed. The ability of learning is one of the central features of human intelligence, which makes it an important ingredient in both traditional Artificial Intelligence (AI) and emerging Cognitive Science. Machine Learning (ML) draws upon ideas from a diverse set of disciplines, including AI, Probability and Statistics, Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy. ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs), Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This books reports the latest developments and futuristic trends in ML.


Advances in Neuro-Information Processing

Advances in Neuro-Information Processing

Author: Mario Köppen

Publisher: Springer

Published: 2009-07-30

Total Pages: 1273

ISBN-13: 3642024904

DOWNLOAD EBOOK

The two volume set LNCS 5506 and LNCS 5507 constitutes the thoroughly refereed post-conference proceedings of the 15th International Conference on Neural Information Processing, ICONIP 2008, held in Auckland, New Zealand, in November 2008. The 260 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. 116 papers are published in the first volume and 112 in the second volume. The contributions deal with topics in the areas of data mining methods for cybersecurity, computational models and their applications to machine learning and pattern recognition, lifelong incremental learning for intelligent systems, application of intelligent methods in ecological informatics, pattern recognition from real-world information by svm and other sophisticated techniques, dynamics of neural networks, recent advances in brain-inspired technologies for robotics, neural information processing in cooperative multi-robot systems.


Brain-Inspired Information Technology

Brain-Inspired Information Technology

Author: Akitoshi Hanazawa

Publisher: Springer Science & Business Media

Published: 2010-09-22

Total Pages: 176

ISBN-13: 3642040241

DOWNLOAD EBOOK

"Brain-inspired information technology" is one of key concepts for the development of information technology in the next generation. Explosive progress of computer technology has been continuing based on a simple principle called "if-then rule". This means that the programmer of software have to direct every action of the computer programs in response to various inputs. There inherently is a limitation of complexity because we human have a limited capacity for managing complex systems. Actually, many bugs, mistakes of programming, exist in computer software, and it is quite difficult to extinguish them. The parts of computer programs where computer viruses attack are also a kind of programming mistakes, called security hole. Of course, human body or nervous system is not perfect. No creator or director, however, exists for us. The function of our brain is equipped by learning, self-organization, natural selection, and etc, resulting in adaptive and flexible information system. Brain-inspired information technology is aiming to realize such nature-made information processing system by using present computer system or specific hardware. To do so, researchers in various research fields are getting together to inspire each other and challenge cooperatively for the same goal.