Real-life decision-making problem has been demonstrated to cover the indeterminacy through single valued neutrosophic set. It is the extension of interval valued neutrosophic set. Most of the problems of real life involve some sort of uncertainty in it among which, one of the famous problem is finding a shortest path of the network. In this paper, a new score function is proposed for interval valued neutrosophic numbers and SPP is solved using interval valued neutrosophic numbers. Additionally, novel algorithms are proposed to find the neutrosophic shortest path by considering interval valued neutrosophic number, trapezoidal and triangular interval valued neutrosophic numbers for the length of the path in a network with illustrative example. Further, comparative analysis has been done for the proposed algorithm with the existing method with the shortcoming and advantage of the proposed method and it shows the effectiveness of the proposed algorithm.
The shortest path problem (SPP) is considerably important in several fields. After typhoons, the resulting damage leads to uncertainty regarding the path weight that can be expressed accurately. A neutrosophic set is a collection of the truth membership, indeterminacy membership, and falsity membership degrees of the elements. In an uncertain environment, neutrosophic numbers can express the edge distance more effectively.
In this article, inaugurate interval-valued triangular neutrosophic fuzzy graph (IVTNFG) of SPP, which is drew on three-sided numbers and IVTNFG. Hear a genuine application is given an illustrative model for IVTNFG. Additionally Shortest way is determined for this model. This present Dijkstra's Algorithm briefest way was checked through Python Jupiter Notebook (adaptation) programming.
One of the important non-linear data structures in Computer Science is graph. Most of the real life network, be it a road transportation network, or airlines network or a communication network etc., cannot be exactly transformed into a graph model, but into a Multigraphs model. The Multigraph is a topological generalization of the graph where multiple links (or edges/arcs) mayexist between two nodes unlike in graph.
Graph theory is a specific concept that has numerous applications throughout many industries. Despite the advancement of this technique, graph theory can still yield ambiguous and imprecise results. In order to cut down on these indeterminate factors, neutrosophic logic has emerged as an applicable solution that is gaining significant attention in solving many real-life decision-making problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. However, empirical research on this specific graph set is lacking. Neutrosophic Graph Theory and Algorithms is a collection of innovative research on the methods and applications of neutrosophic sets and logic within various fields including systems analysis, economics, and transportation. While highlighting topics including linear programming, decision-making methods, and homomorphism, this book is ideally designed for programmers, researchers, data scientists, mathematicians, designers, educators, researchers, academicians, and students seeking current research on the various methods and applications of graph theory.
The shortest path problem is a topic of increasing interest in various scientific fields. The damage to roads and bridges caused by disasters makes traffic routes that can be accurately expressed become indeterminate. A neutrosophic set is a collection of the truth membership, indeterminacy membership, and falsity membership of the constituent elements. It has a symmetric form and indeterminacy membership is their axis of symmetry.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.
The shortest path problem is a topic of increasing interest in various scientific fields. The damage to roads and bridges caused by disasters makes traffic routes that can be accurately expressed become indeterminate. A neutrosophic set is a collection of the truth membership, indeterminacy membership, and falsity membership of the constituent elements. It has a symmetric form and indeterminacy membership is their axis of symmetry. In uncertain environments, the neutrosophic number can more effectively express the edge distance.
This book presents new knowledge and recent developments in all aspects of computational techniques, mathematical modeling, energy systems, applications of fuzzy sets and intelligent computing. The book is a collection of best selected research papers presented at the International Conference on “Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy,” organized by the Department of Mathematics, Pandit Deendayal Petroleum University, in association with Forum for Interdisciplinary Mathematics, Institution of Engineers (IEI) – Gujarat and Computer Society of India (CSI) – Ahmedabad. The book provides innovative works of researchers, academicians and students in the area of interdisciplinary mathematics, statistics, computational intelligence and renewable energy.
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.