Advances in Time Series Forecasting

Advances in Time Series Forecasting

Author: Cagdas Hakan Aladag

Publisher: Bentham Science Publishers

Published: 2017-12-06

Total Pages: 196

ISBN-13: 1681085283

DOWNLOAD EBOOK

This volume is a valuable source of recent knowledge about advanced time series forecasting techniques such as artificial neural networks, fuzzy time series, or hybrid approaches. New forecasting frameworks are discussed and their application is demonstrated. The second volume of the series includes applications of some powerful forecasting approaches with a focus on fuzzy time series methods. Chapters integrate these methods with concepts such as neural networks, high order multivariate systems, deterministic trends, distance measurement and much more. The chapters are contributed by eminent scholars and serve to motivate and accelerate future progress while introducing new branches of time series forecasting. This book is a valuable resource for MSc and PhD students, academic personnel and researchers seeking updated and critically important information on the concepts of advanced time series forecasting and its applications.


Introduction To Type-2 Fuzzy Logic Control

Introduction To Type-2 Fuzzy Logic Control

Author: Jerry Mendel

Publisher: John Wiley & Sons

Published: 2014-06-16

Total Pages: 470

ISBN-13: 1118901444

DOWNLOAD EBOOK

An introductory book that provides theoretical, practical, and application coverage of the emerging field of type-2 fuzzy logic control Until recently, little was known about type-2 fuzzy controllers due to the lack of basic calculation methods available for type-2 fuzzy sets and logic—and many different aspects of type-2 fuzzy control still needed to be investigated in order to advance this new and powerful technology. This self-contained reference covers everything readers need to know about the growing field. Written with an educational focus in mind, Introduction to Type-2 Fuzzy Logic Control: Theory and Applications uses a coherent structure and uniform mathematical notations to link chapters that are closely related, reflecting the book’s central themes: analysis and design of type-2 fuzzy control systems. The book includes worked examples, experiment and simulation results, and comprehensive reference materials. The book also offers downloadable computer programs from an associated website. Presented by world-class leaders in type-2 fuzzy logic control, Introduction to Type-2 Fuzzy Logic Control: Is useful for any technical person interested in learning type-2 fuzzy control theory and its applications Offers experiment and simulation results via downloadable computer programs Features type-2 fuzzy logic background chapters to make the book self-contained Provides an extensive literature survey on both fuzzy logic and related type-2 fuzzy control Introduction to Type-2 Fuzzy Logic Control is an easy-to-read reference book suitable for engineers, researchers, and graduate students who want to gain deep insight into type-2 fuzzy logic control.


Uncertain Rule-Based Fuzzy Systems

Uncertain Rule-Based Fuzzy Systems

Author: Jerry M. Mendel

Publisher: Springer

Published: 2017-05-17

Total Pages: 701

ISBN-13: 3319513702

DOWNLOAD EBOOK

The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material.


Pattern Recognition with Fuzzy Objective Function Algorithms

Pattern Recognition with Fuzzy Objective Function Algorithms

Author: James C. Bezdek

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 267

ISBN-13: 147570450X

DOWNLOAD EBOOK

The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.


Fuzzy Sets and Their Extensions: Representation, Aggregation and Models

Fuzzy Sets and Their Extensions: Representation, Aggregation and Models

Author: Humberto Bustince

Publisher: Springer

Published: 2007-10-30

Total Pages: 674

ISBN-13: 3540737235

DOWNLOAD EBOOK

This carefully edited book presents an up-to-date state of current research in the use of fuzzy sets and their extensions. It pays particular attention to foundation issues and to their application to four important areas where fuzzy sets are seen to be an important tool for modeling and solving problems. The book’s 34 chapters deal with the subject with clarity and effectiveness. They include four review papers introducing some non-standard representations


Recent Advances in Interval Type-2 Fuzzy Systems

Recent Advances in Interval Type-2 Fuzzy Systems

Author: Oscar Castillo

Publisher: Springer Science & Business Media

Published: 2012-04-23

Total Pages: 93

ISBN-13: 3642289568

DOWNLOAD EBOOK

This book reviews current state of the art methods for building intelligent systems using type-2 fuzzy logic and bio-inspired optimization techniques. Combining type-2 fuzzy logic with optimization algorithms, powerful hybrid intelligent systems have been built using the advantages that each technique offers. This book is intended to be a reference for scientists and engineers interested in applying type-2 fuzzy logic for solving problems in pattern recognition, intelligent control, intelligent manufacturing, robotics and automation. This book can also be used as a reference for graduate courses like the following: soft computing, intelligent pattern recognition, computer vision, applied artificial intelligence, and similar ones. We consider that this book can also be used to get novel ideas for new lines of re-search, or to continue the lines of research proposed by the authors.


Type-2 Fuzzy Logic: Theory and Applications

Type-2 Fuzzy Logic: Theory and Applications

Author: Oscar Castillo

Publisher: Springer Science & Business Media

Published: 2008-02-20

Total Pages: 252

ISBN-13: 3540762833

DOWNLOAD EBOOK

This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.


Time-Series Prediction and Applications

Time-Series Prediction and Applications

Author: Amit Konar

Publisher: Springer

Published: 2017-03-25

Total Pages: 255

ISBN-13: 3319545973

DOWNLOAD EBOOK

This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers’ ability and understanding of the topics covered.


Applications of Soft Computing in Time Series Forecasting

Applications of Soft Computing in Time Series Forecasting

Author: Pritpal Singh

Publisher: Springer

Published: 2015-11-22

Total Pages: 166

ISBN-13: 3319262939

DOWNLOAD EBOOK

This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and government organizations.