Interpreting Probability Models

Interpreting Probability Models

Author: Tim Futing Liao

Publisher: SAGE

Published: 1994-06-30

Total Pages: 100

ISBN-13: 9780803949997

DOWNLOAD EBOOK

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.


Interpreting Probability Models

Interpreting Probability Models

Author: Tim Futing Liao

Publisher:

Published: 1994

Total Pages: 88

ISBN-13: 9781412984577

DOWNLOAD EBOOK

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models.


Linear Probability, Logit, and Probit Models

Linear Probability, Logit, and Probit Models

Author: John H. Aldrich

Publisher: SAGE

Published: 1984-11

Total Pages: 100

ISBN-13: 9780803921337

DOWNLOAD EBOOK

After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.


Logit and Probit

Logit and Probit

Author: Vani K. Borooah

Publisher: SAGE

Published: 2002

Total Pages: 108

ISBN-13: 9780761922421

DOWNLOAD EBOOK

Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.


Interpretable Machine Learning

Interpretable Machine Learning

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Logit Modeling

Logit Modeling

Author: Alfred DeMaris

Publisher: SAGE

Published: 1992-06-06

Total Pages: 100

ISBN-13: 9780803943773

DOWNLOAD EBOOK

Logit models : theoretical background. Logit models for multidimensional tables. Logistic regression. Advanced topics in logistic regression. Appendix : Computer routines.


Introduction to Probability Models

Introduction to Probability Models

Author: Sheldon M. Ross

Publisher: Academic Press

Published: 2006-12-11

Total Pages: 801

ISBN-13: 0123756871

DOWNLOAD EBOOK

Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics


Discrete Probability Models and Methods

Discrete Probability Models and Methods

Author: Pierre Brémaud

Publisher: Springer

Published: 2017-01-31

Total Pages: 561

ISBN-13: 3319434764

DOWNLOAD EBOOK

The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.


Introduction to Probability Models

Introduction to Probability Models

Author: Sheldon M. Ross

Publisher: Elsevier

Published: 2007

Total Pages: 801

ISBN-13: 0123736358

DOWNLOAD EBOOK

Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.