Interpretations of Probability

Interpretations of Probability

Author: Andrei Khrennikov

Publisher: Walter de Gruyter

Published: 2009-02-26

Total Pages: 241

ISBN-13: 3110213192

DOWNLOAD EBOOK

This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.


Interpreting Probability

Interpreting Probability

Author: David Howie

Publisher: Cambridge University Press

Published: 2002-08-08

Total Pages: 276

ISBN-13: 1139434373

DOWNLOAD EBOOK

The term probability can be used in two main senses. In the frequency interpretation it is a limiting ratio in a sequence of repeatable events. In the Bayesian view, probability is a mental construct representing uncertainty. This 2002 book is about these two types of probability and investigates how, despite being adopted by scientists and statisticians in the eighteenth and nineteenth centuries, Bayesianism was discredited as a theory of scientific inference during the 1920s and 1930s. Through the examination of a dispute between two British scientists, the author argues that a choice between the two interpretations is not forced by pure logic or the mathematics of the situation, but depends on the experiences and aims of the individuals involved. The book should be of interest to students and scientists interested in statistics and probability theories and to general readers with an interest in the history, sociology and philosophy of science.


A Philosophical Guide to Chance

A Philosophical Guide to Chance

Author: Toby Handfield

Publisher: Cambridge University Press

Published: 2012-04-05

Total Pages: 265

ISBN-13: 1107080010

DOWNLOAD EBOOK

It is a commonplace that scientific inquiry makes extensive use of probabilities, many of which seem to be objective chances, describing features of reality that are independent of our minds. Such chances appear to have a number of paradoxical or puzzling features: they appear to be mind-independent facts, but they are intimately connected with rational psychology; they display a temporal asymmetry, but they are supposed to be grounded in physical laws that are time-symmetric; and chances are used to explain and predict frequencies of events, although they cannot be reduced to those frequencies. This book offers an accessible and non-technical introduction to these and other puzzles. Toby Handfield engages with traditional metaphysics and philosophy of science, drawing upon recent work in the foundations of quantum mechanics and thermodynamics to provide a novel account of objective probability that is empirically informed without requiring specialist scientific knowledge.


Philosophy of Probability and Statistical Modelling

Philosophy of Probability and Statistical Modelling

Author: Mauricio Suárez

Publisher: Cambridge University Press

Published: 2021-01-21

Total Pages:

ISBN-13: 1108983847

DOWNLOAD EBOOK

This Element has two main aims. The first one (sections 1-7) is an historically informed review of the philosophy of probability. It describes recent historiography, lays out the distinction between subjective and objective notions, and concludes by applying the historical lessons to the main interpretations of probability. The second aim (sections 8-13) focuses entirely on objective probability, and advances a number of novel theses regarding its role in scientific practice. A distinction is drawn between traditional attempts to interpret chance, and a novel methodological study of its application. A radical form of pluralism is then introduced, advocating a tripartite distinction between propensities, probabilities and frequencies. Finally, a distinction is drawn between two different applications of chance in statistical modelling which, it is argued, vindicates the overall methodological approach. The ensuing conception of objective probability in practice is the 'complex nexus of chance'.


Handbook of Dynamics and Probability

Handbook of Dynamics and Probability

Author: Peter Müller

Publisher: Springer Nature

Published: 2021-11-20

Total Pages: 544

ISBN-13: 3030884864

DOWNLOAD EBOOK

Our time is characterized by an explosive growth in the use of ever more complicated and sophisticated (computer) models. These models rely on dynamical systems theory for the interpretation of their results and on probability theory for the quantification of their uncertainties. A conscientious and intelligent use of these models requires that both these theories are properly understood. This book is to provide such understanding. It gives a unifying treatment of dynamical systems theory and probability theory. It covers the basic concepts and statements of these theories, their interrelations, and their applications to scientific reasoning and physics. The book stresses the underlying concepts and mathematical structures but is written in a simple and illuminating manner without sacrificing too much mathematical rigor. The book is aimed at students, post-docs, and researchers in the applied sciences who aspire to better understand the conceptual and mathematical underpinnings of the models that they use. Despite the peculiarities of any applied science, dynamics and probability are the common and indispensable tools in any modeling effort. The book is self-contained, with many technical aspects covered in appendices, but does require some basic knowledge in analysis, linear algebra, and physics. Peter Müller, now a professor emeritus at the University of Hawaii, has worked extensively on ocean and climate models and the foundations of complex system theories.


Probability Via Expectation

Probability Via Expectation

Author: Peter Whittle

Publisher: Springer Science & Business Media

Published: 1992-05-14

Total Pages: 324

ISBN-13: 9780387977645

DOWNLOAD EBOOK

A textbook for an introductory undergraduate course in probability theory, first published in 1970, and revised in 1976. The novelty of the approach is its basis on the subject's expectation rather than on probability measures. Assumes a fair degree of mathematical sophistication. Annotation copyrighted by Book News, Inc., Portland, OR


Degrees of Belief

Degrees of Belief

Author: Franz Huber

Publisher: Springer Science & Business Media

Published: 2008-12-21

Total Pages: 352

ISBN-13: 1402091982

DOWNLOAD EBOOK

This anthology is the first book to give a balanced overview of the competing theories of degrees of belief. It also explicitly relates these debates to more traditional concerns of the philosophy of language and mind and epistemic logic.


Philosophy and Probability

Philosophy and Probability

Author: Timothy Childers

Publisher: Oxford University Press, USA

Published: 2013-05-30

Total Pages: 213

ISBN-13: 0199661820

DOWNLOAD EBOOK

Probability is increasingly important for our understanding of the world. What is probability? How do we model it, and how do we use it? Timothy Childers presents a lively introduction to the foundations of probability and to philosophical issues it raises. He keeps technicalities to a minimum, and assumes no prior knowledge of the subject. He explains the main interpretations of probability-frequentist, propensity, classical, Bayesian, and objective Bayesian-and uses stimulating examples to bring the subject to life. All students of philosophy will benefit from an understanding of probability, and this is the book to provide it.


Probability and Bayesian Modeling

Probability and Bayesian Modeling

Author: Jim Albert

Publisher: CRC Press

Published: 2019-12-06

Total Pages: 553

ISBN-13: 1351030132

DOWNLOAD EBOOK

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.