Interpolation of Rational Matrix Functions

Interpolation of Rational Matrix Functions

Author: Joseph Ball

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 616

ISBN-13: 3034877099

DOWNLOAD EBOOK

This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an independent theory. After two years a major part of the first draft was prepared. Then a long period of revising the original draft and introducing recently acquired results and methods followed. There followed a period of polishing and of 25 chapters and the appendix commuting at various times somewhere between Williamsburg, Blacksburg, Tel Aviv, College Park and Amsterdam (sometimes with one or two of the authors).


Topics in Interpolation Theory of Rational Matrix-valued Functions

Topics in Interpolation Theory of Rational Matrix-valued Functions

Author: I. Gohberg

Publisher: Birkhäuser

Published: 2013-11-21

Total Pages: 257

ISBN-13: 3034854692

DOWNLOAD EBOOK

One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.


Lectures on Operator Theory and Its Applications

Lectures on Operator Theory and Its Applications

Author: Albrecht Böttcher

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 354

ISBN-13: 082180457X

DOWNLOAD EBOOK

Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.


Loewner's Theorem on Monotone Matrix Functions

Loewner's Theorem on Monotone Matrix Functions

Author: Barry Simon

Publisher: Springer Nature

Published: 2019-08-29

Total Pages: 445

ISBN-13: 3030224228

DOWNLOAD EBOOK

This book provides an in depth discussion of Loewner’s theorem on the characterization of matrix monotone functions. The author refers to the book as a ‘love poem,’ one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner’s theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.


Functions of Matrices

Functions of Matrices

Author: Nicholas J. Higham

Publisher: SIAM

Published: 2008-01-01

Total Pages: 445

ISBN-13: 0898717779

DOWNLOAD EBOOK

A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.


Featured Reviews in Mathematical Reviews 1997-1999

Featured Reviews in Mathematical Reviews 1997-1999

Author: Donald G. Babbitt

Publisher: American Mathematical Soc.

Published: 2000-05-05

Total Pages: 762

ISBN-13: 9780821896709

DOWNLOAD EBOOK

This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.


Slice Hyperholomorphic Schur Analysis

Slice Hyperholomorphic Schur Analysis

Author: Daniel Alpay

Publisher: Birkhäuser

Published: 2016-12-09

Total Pages: 365

ISBN-13: 3319425145

DOWNLOAD EBOOK

This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.


The Gohberg Anniversary Collection

The Gohberg Anniversary Collection

Author: Seymour Goldberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 488

ISBN-13: 3034892764

DOWNLOAD EBOOK

R. S. PHILLIPS I am very gratified to have been asked to give this introductory talk for our honoured guest, Israel Gohberg. I should like to begin by spending a few minutes talking shop. One of the great tragedies of being a mathematician is that your papers are read so seldom. On the average ten people will read the introduction to a paper and perhaps two of these will actually study the paper. It's difficult to know how to deal with this problem. One strategy which will at least get you one more reader, is to collaborate with someone. I think Israel early on caught on to this, and I imagine that by this time most of the analysts in the world have collaborated with him. He continues relentlessly in this pursuit; he visits his neighbour Harry Dym at the Weizmann Institute regularly, he spends several months a year in Amsterdam working with Rien Kaashoek, several weeks in Maryland with Seymour Goldberg, a couple of weeks here in Calgary with Peter Lancaster, and on the rare occasions when he is in Tel Aviv, he takes care of his many students.


The Gohberg Anniversary Collection

The Gohberg Anniversary Collection

Author: Dym

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 1022

ISBN-13: 303489144X

DOWNLOAD EBOOK

R. S. PHILLIPS I am very gratified to have been asked to give this introductory talk for our honoured guest, Israel Gohberg. I should like to begin by spending a few minutes talking shop. One of the great tragedies of being a mathematician is that your papers are read so seldom. On the average ten people will read the introduction to a paper and perhaps two of these will actually study the paper. It's difficult to know how to deal with this problem. One strategy which will at least get you one more reader, is to collaborate with someone. I think Israel early on caught on to this, and I imagine that by this time most of the analysts in the world have collaborated with him. He continues relentlessly in this pursuit; he visits his neighbour Harry Dym at the Weizmann Institute regularly, he spends several months a year in Amsterdam working with Rien Kaashoek, several weeks in Maryland with Seymour Goldberg, a couple of weeks here in Calgary with Peter Lancaster, and on the rare occasions when he is in Tel Aviv, he takes care of his many students.