In When Things Start to Think, Neil Gershenfeld tells the story of his Things that Think group at MIT's Media Lab, the group of innovative scientists and researchers dedicated to integrating digital technology into the fabric of our lives. Gershenfeld offers a glimpse at the brave new post-computerized world, where microchips work for us instead of against us. He argues that we waste the potential of the microchip when we confine it to a box on our desk: the real electronic revolution will come when computers have all but disappeared into the walls around us. Imagine a digital book that looks like a traditional book printed on paper and is pleasant to read in bed but has all the mutability of a screen display. How about a personal fabricator that can organize digitized atoms into anything you want, or a musical keyboard that can be woven into a denim jacket? When Things Start to Think is a book for people who want to know what the future is going to look like, and for people who want to know how to create the future.
This book develops the core system science needed to enable the development of a complex industrial internet of things/manufacturing cyber-physical systems (IIoT/M-CPS). Gathering contributions from leading experts in the field with years of experience in advancing manufacturing, it fosters a research community committed to advancing research and education in IIoT/M-CPS and to translating applicable science and technology into engineering practice. Presenting the current state of IIoT and the concept of cybermanufacturing, this book is at the nexus of research advances from the engineering and computer and information science domains. Readers will acquire the core system science needed to transform to cybermanufacturing that spans the full spectrum from ideation to physical realization.
This book provides a single-source reference to additive manufacturing, accessible to anyone with a basic background in engineering and materials science. Unlike other books on additive manufacturing that include coverages of things such as machine architecture, applications, business and present market conditions, this book focuses on providing comprehensive coverage of currently available additive manufacturing processes. All processes are explained with the help of various, original diagrams, useful for beginners and advanced researchers alike. Provides comprehensive coverages of all current processes available in additive manufacturing; Explains processes with the help of various original diagrams; Explains future process development at the last chapter, providing research outlook; Includes extensive references at the end of each chapter for further reading of original research.
Explore the current state of the production, processing, and manufacturing industries and discover what it will take to achieve re-industrialization of the former industrial powerhouses that can counterbalance the benefits of cheap labor providers dominating the industrial sector. This book explores the potential for the Internet of Things (IoT), Big Data, Cyber-Physical Systems (CPS), and Smart Factory technologies to replace the still largely mechanical, people-based systems of offshore locations. Industry 4.0: The Industrial Internet of Things covers Industry 4.0, a term that encapsulates trends and technologies that could rewrite the rules of manufacturing and production. What You'll Learn: Discover the Industrial Internet and Industrial Internet of Things See the technologies that must advance to enable Industry 4.0 and learn what is happening today to make that happen Observe examples of the implementation of Industry 4.0 Apply some of these case studies Discover the potential to take back the lead in manufacturing, and the potential fallout that could result Who This Book is For: Business futurists, business strategists, CEOs and CTOs, and anyone with an interest and an IT or business background; or anyone who may have a keen interest in how the future of IT, industry and production will develop over the next two decades.
Industrial internet of things (IIoT) is changing the face of industry by completely redefining the way stakeholders, enterprises, and machines connect and interact with each other in the industrial digital ecosystem. Smart and connected factories, in which all the machinery transmits real-time data, enable industrial data analytics for improving operational efficiency, productivity, and industrial processes, thus creating new business opportunities, asset utilization, and connected services. IIoT leads factories to step out of legacy environments and arcane processes towards open digital industrial ecosystems. Innovations in the Industrial Internet of Things (IIoT) and Smart Factory is a pivotal reference source that discusses the development of models and algorithms for predictive control of industrial operations and focuses on optimization of industrial operational efficiency, rationalization, automation, and maintenance. While highlighting topics such as artificial intelligence, cyber security, and data collection, this book is ideally designed for engineers, manufacturers, industrialists, managers, IT consultants, practitioners, students, researchers, and industrial industry professionals.
Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach uses an innovative approach to explore how the Internet of Things (IoT) and big data can improve approaches, create efficiencies and make discoveries. Rapid growth of the IoT has encouraged many companies in the manufacturing sector to make use of this technology to unlock its potential. Pharmaceutical manufacturing companies are no exception to this, as IoT has the potential to revolutionize aspects of the pharmaceutical manufacturing process, from drug discovery to manufacturing. Using clear, concise language and real world case studies, this book discusses systems level from both a human-factors point-of-view and the perspective of networking, databases, privacy and anti-spoofing. The wide variety of topics presented offers readers multiple perspectives on a how to integrate the Internet of Things into pharmaceutical manufacturing. - Covers efficiency improvements of pharmaceutical manufacturing through IoT/Big Data approaches - Explores cutting-edge technologies through sensor enabled environment in the pharmaceutical industry - Discusses the systems level from both a human-factors point-of-view and the perspective of networking, databases, privacy and anti-spoofing
This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: IntroductionDigitising industry and IoT as key enabler in the new era of Digital EconomyIoT Strategic Research and Innovation Agenda IoT in the digital industrial context: Digital Single MarketIntegration of heterogeneous systems and bridging the virtual, digital and physical worldsFederated IoT platforms and interoperabilityEvolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces. Innovation through IoT ecosystemsTrust-based IoT end-to-end security, privacy framework User acceptance, societal, ethical aspects and legal issuesInternet of Things Applications
The two-volume set IFIP AICT 513 and 514 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2017, held in Hamburg, Germany, in September 2017. The 121 revised full papers presented were carefully reviewed and selected from 163 submissions. They are organized in the following topical sections: smart manufacturing system characterization; product and asset life cycle management in smart factories of industry 4.0; cyber-physical (IIoT) technology deployments in smart manufacturing systems; multi-disciplinary collaboration in the development of smart product-service solutions; sustainable human integration in cyber-physical systems: the operator 4.0; intelligent diagnostics and maintenance solutions; operations planning, scheduling and control; supply chain design; production management in food supply chains; factory planning; industrial and other services; operations management in engineer-to-order manufacturing; gamification of complex systems design development; lean and green manufacturing; and eco-efficiency in manufacturing operations.
This book constitutes the thoroughly refereed post-conference proceedings of the International Conference on Industrial IoT Technologies and Applications, IoT 2016, held in GuangZhou, China, in March 2016. The volume contains 26 papers carefully reviewed and selected from 55 submissions focusing on topics such as big data, cloud computing, Internet of Things (IoT).
The Internet of Things (IoT) is one of the core technologies of current and future information and communications technology (ICT) sectors. IoT technologies will be deployed in numerous industries, including health, transport, smart cities, utility sectors, environment, security, and many other areas. In a manner suitable to a broad range of readers, this book introduces various key IoT technologies focusing on algorithms, process algebra, network architecture, energy harvesting, wireless communications, and network security. It presents IoT system design techniques, international IoT standards, and recent research outcomes relevant to the IoT system developments and provides existing and emerging solutions to the design and development of IoT platforms for multi-sector industries, particularly for Industry 4.0. The book also addresses some of the regulatory issues and design challenges related to IoT system deployments and proposes guidelines for possible future applications.