This collection represents a single volume of technical papers presented at the Annual International DIC Society Conference and SEM Fall Conference organized by the Society for Experimental Mechanics and Sandia National Laboratories and held in Philadelphia, PA, November 7-10, 2016. The volume presents early findings from experimental, standards development and various other investigations concerning digital image correlation - an important area within Experimental Mechanics. The area of Digital Image Correlation has been an integral track within the SEM Annual Conference spearheaded by Professor Michael Sutton from the University of South Carolina. In 2016, the SEM and Sandia joined their collaborative strengths to launch a standing fall meeting focusing specifically on developments in the area of Digital Image Correlation. The contributed papers within this volume span numerous technical aspects of DIC including standards development for the industry.
Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3 of the Proceedings of the 2018 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: New Developments in Optical Methods & Fringe Pattern Analysis; DIC Applications for Challenging Environments; Optical Methods in SEM: History & Perspective; Mechanical Characterization of Materials & Structures with Optical Methods; Bioengineering.
This book presents the proceedings of the 3rd edition of the International Conference on Theoretical, Applied and Experimental Mechanics. The papers focus on all aspects of theoretical, applied and experimental mechanics, including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture mechanics, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation.
The field of Experimental Mechanics has evolved substantially over the past 100 years. In the early years, the field was primarily comprised of applied physicists, civil engineers, railroad engineers, and mechanical engineers. The field defined itself by those who invented, developed, and refined experimental tools and techniques, based on the latest technologies available, to better understand the fundamental mechanics of materials and structures used to design many aspects of our everyday life. What the early experimental mechanician measured, observed, and evaluated were things like stress, strain, fracture, and fatigue, to name a few, which remain fundamental to the field today. This book guides you through a chronology of the formation of the Society for Experimental Mechanics, and its ensuing evolution. The Society was founded in 1935 by a very small group of individuals that understood the value of creating a common forum for people working in the field of Applied Mechanics of Solids, where extensive theoretical developments needed the input of experimental validation. A community of individuals who—through research, applications, sharp discussion of ideas—could fulfill the needs of a nation rapidly evolving in the technological field. The founders defined, influenced, and grew the field of what we now call Experimental Mechanics. Written as a narrative, the author describes, based on input from numerous individuals and personal experiences, the evolution of the New England Photoelasticity Conference to what we know today as the Society for Experimental Mechanics (SEM). The narrative is the author's perspective that invites members of the Society to contribute to the story by adding names of individuals, institutions, and technologies that have defined the Society over the past 75 years. Many of the key individuals who greatly influenced the advancement of the field of Experimental Mechanics are mentioned. These individuals are, in many ways, the founders of the field who have written textbooks, brought their teaching leadership and experiences to the classroom, worked on the Apollo project, and invented testing, evaluation, and measurement equipment that have shaped the fields of engineering. SEM's international membership is highly represented by those in academia, as you will read, although there has always been a powerful balance and contribution from industry and research organizations across the globe. The role of the experimental mechanician is defined, in many ways, through the individual legacies shared in the following pages....legacies that define the past and create the foundation for what is now and what is to come.
Dynamic Behavior of Materials, Volume 1 of the Proceedings of the 2019 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the first volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: Synchrotron Applications/Advanced Dynamic Imaging Quantitative Visualization of Dynamic Events Novel Experimental Techniques Dynamic Behavior of Geomaterials Dynamic Failure & Fragmentation Dynamic Response of Low Impedance Materials Hybrid Experimental/Computational Studies Shock and Blast Loading Advances in Material Modeling Industrial Applications
ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.
Summarizing the latest advances in experimental impact mechanics, this book provides cutting-edge techniques and methods for designing, executing, analyzing, and interpreting the results of experiments involving the dynamic responses of materials and structures. It provides tailored guidelines and solutions for specific applications and materials, covering topics such as dynamic characterization of metallic materials, fiber-like materials, low-impedance materials, concrete and more. Damage evolution and constitutive behavior of materials under impact loading, one-dimensional strain loading, intermediate and high strain rates, and other environmental conditions are discussed, as are techniques using high temperature testing and miniature Kolsky bars. Provides cutting-edge techniques and methods for designing, executing, analyzing, and interpreting the results of experimental impact mechanics Covers experimental guidelines and solutions for an array of different materials, conditions, and applications Enables readers to quickly design and perform their own experiments and properly interpret the results Looks at application-specific post-test analysis
Mechanics of Biological Systems and Materials, Volume 6 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the sixth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Soft Material Mechanics Bio-Engineering and Biomechanics Cells Mechanics Biomaterials and Mechanics Across Multiple Scales Biomechanics Biotechnologies Traumatic Brain Injury Mechanics
This book provides important insights into the operating principles of plants by highlighting the relationship between structure and function. It describes the quantitative determination of structural and mechanical parameters, such as the material properties of a tissue, in correlation with specific features, such as the ability of the tissue to conduct water or withstand bending forces, which will allow advanced analysis in plant biomechanics. This knowledge enables researchers to understand the developmental changes that occur in plant organs over their life span and under the influence of environmental factors. The authors provide an overview of the state of the art of plant structure and function and how they relate to the mechanical behavior of the organism, such as the ability of plants to grow against the gravity vector or to withstand the forces of wind. They also show the sophisticated strategies employed by plants to effect organ movement and morphogenesis in the absence of muscles or cellular migration. As such, this book not only appeals to scientists currently working in plant sciences and biophysics, but also inspires future generations to pursue their own research in this area.