Modern developments in multivariate approximation

Modern developments in multivariate approximation

Author: Werner Haussmann

Publisher: Springer Science & Business Media

Published: 2003-10-24

Total Pages: 324

ISBN-13: 9783764321956

DOWNLOAD EBOOK

This volume contains a selection of eighteen peer-reviewed articles that were presented at the 5th International Conference on Multivariate Approximation, held in Witten-Bommerholz in September 2002. The contributions cover recent developments of constructive approximation on manifolds, approximation by splines and kernels, subdivision techniques and wavelet methods. The main topics are: - applications of multivariate approximation in finance - approximation and stable reconstruction of images, data reduction - multivariate splines for Lagrange interpolation and quasi-interpolation - radial basis functions - spherical point sets - refinable function vectors and non-stationary subdivision - applications of adaptive wavelet methods - blending functions and cubature formulae - singularities of harmonic functions The book provides an overview of state-of-the-art developments in a highly relevant field of applied mathematics, with many links to computer science and geophysics.


Topics in Multivariate Approximation and Interpolation

Topics in Multivariate Approximation and Interpolation

Author: Kurt Jetter

Publisher: Elsevier

Published: 2005-11-15

Total Pages: 357

ISBN-13: 0080462049

DOWNLOAD EBOOK

This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for graduate students specializing in these topics, and for researchers in universities and in industry. A collection of articles of highest scientific standard An excellent introduction and overview of recent topics from multivariate approximation A valuable source of references for specialists in the field A representation of the state-of-the-art in selected areas of multivariate approximation A rigorous mathematical introduction to special topics of interdisciplinary research


Multivariate Approximation and Splines

Multivariate Approximation and Splines

Author: Günther Nürnberger

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 329

ISBN-13: 3034888716

DOWNLOAD EBOOK

This book contains the refereed papers which were presented at the interna tional conference on "Multivariate Approximation and Splines" held in Mannheim, Germany, on September 7-10,1996. Fifty experts from Bulgaria, England, France, Israel, Netherlands, Norway, Poland, Switzerland, Ukraine, USA and Germany participated in the symposium. It was the aim of the conference to give an overview of recent developments in multivariate approximation with special emphasis on spline methods. The field is characterized by rapidly developing branches such as approximation, data fit ting, interpolation, splines, radial basis functions, neural networks, computer aided design methods, subdivision algorithms and wavelets. The research has applications in areas like industrial production, visualization, pattern recognition, image and signal processing, cognitive systems and modeling in geology, physics, biology and medicine. In the following, we briefly describe the contents of the papers. Exact inequalities of Kolmogorov type which estimate the derivatives of mul the paper of BABENKO, KOFANovand tivariate periodic functions are derived in PICHUGOV. These inequalities are applied to the approximation of classes of mul tivariate periodic functions and to the approximation by quasi-polynomials. BAINOV, DISHLIEV and HRISTOVA investigate initial value problems for non linear impulse differential-difference equations which have many applications in simulating real processes. By applying iterative techniques, sequences of lower and upper solutions are constructed which converge to a solution of the initial value problem.


Recent Progress in Multivariate Approximation

Recent Progress in Multivariate Approximation

Author: Werner Haussmann

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 258

ISBN-13: 3034882726

DOWNLOAD EBOOK

Nineteen contributions cover recent topics in constructive approximation on varieties, approximation by solutions of partial differential equations, application of Riesz bases and frames, multiwavelets and subdivision. An essential resource for researchers and graduates in applied mathematics, computer science and geophysics who are interested in the state-of-the-art developments in multivariate approximation.


Topics in Multivariate Approximation

Topics in Multivariate Approximation

Author: C. K. Chui

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 346

ISBN-13: 1483271005

DOWNLOAD EBOOK

Topics in Multivariate Approximation contains the proceedings of an international workshop on multivariate approximation held at the University of Chile in Santiago, Chile, on December 15-19, 1986. Leading researchers in the field discussed several problem areas related to multivariate approximation and tackled topics ranging from multivariate splines and fitting of scattered data to tensor approximation methods and multivariate polynomial approximation. Numerical grid generation and finite element methods were also explored, along with constrained interpolation and smoothing. Comprised of 22 chapters, this book first describes the application of Boolean methods of approximation in combination with the theory of right invertible operators to bivariate Fourier expansions. The reader is then introduced to ill-posed problems in multivariate approximation; interpolation of scattered data by radial functions; and shape-preserving surface interpolation. Subsequent chapters focus on approximation by harmonic functions; numerical generation of nested series of general triangular grids; triangulation methods; and inequalities arising from best local approximations in rectangles. A bibliography of multivariate approximation concludes the book. This monograph will be of interest to mathematicians.