Topic Editor Harada receives financial support from AGC Research Collaboration System with the title “Research on the control of biocompatibility based on the analysis of substrate surface”. The other Topic Editors declare no competing interests
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas–liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments. - 2019 PROSE Awards - Winner: Category: Chemistry and Physics: Association of American Publishers - Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists - Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom - Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and surveying the current state of research
This book is a research monograph summarizing recent advances related to the molecular structure of water and ice, and it is based on the latest spectroscopic data available. A special focus is given to radio- and microwave frequency regions. Within the five interconnected chapters, the author reviews the electromagnetic waves interaction with water, ice, and moist substances, discussing the microscopic mechanisms behind the dielectric responses. Well-established classic views concerning the structure of water and ice are considered along with new approaches related to atomic and molecular dynamics. Particular attention is given to nanofluidics, atmospheric science, and electrochemistry. The mathematical apparatus, based on diverse approaches employed in condensed matter physics, is widely used and allows the reader to quantitatively describe the electrodynamic response of water and ice in both bulk and confined states. This book is intended for a wide audience covering physicists, electrochemists, geophysicists, engineers, biophysicists, and general scientists who work on the electromagnetic radiation interaction with water and moist substances.
Knowledge of basic clay microstructure is fundamental to an understanding of the physical, chemical, and mechanical properties of fine-grained sediments and rocks. This compilation of fifty-nine peer-reviewed papers examines clay microstructure in detail with comprehensive sections focusing on microstructure signatures, environmental processes, modeling, measurement techniques, and future research recommendations. Many of these topics are discussed in light of geological and engineering applications, such as hazardous waste disposal, construction techniques, and drilling programs. The field of clay microstructure is developing rapidly. The concepts, observations, and principles presented in this book will help stimulate new thought and be a "spring board" for exciting new research.
This volume contains a selection of important papers by P-G de Gennes (1991 Nobel Prize Winner in Physics) which have had a long-lasting impact on our understanding of condensed matter (solid state physics, liquid crystals, polymers, interfaces, wetting and adhesion). A typical example is the original article on “reptation” of polymer chains. The author has added some “afterthoughts” to the main papers (explaining their successes or weaknesses), and some current views on each special problem. Complex systems (polymers or granular matters, etc) are explained without heavy calculations — using simple scaling laws as the main tool.
This volume is a selection of invaluable papers by P-G de Gennes — 1991 Nobel Prize winner in Physics — which have had a long-lasting impact on our understanding of condensed matter. Important ideas on polymers, liquid crystals and interfaces are described. The author has added some afterthoughts to the main papers (explaining their successes or weaknesses), and some current views on each special problem. The text is simple and easy to read.
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
Specific ion effects are important in numerous fields of science and technology. This book summarizes the main ideas that came up over the years. It presents the efforts of theoreticians and supports it by the experimental results stemming from various techniques.
Colloid and Interface Chemistry for Water Quality Control provides basic but essential knowledge of colloid and interface science for water and wastewater treatment. Divided into two sections, chapters 1 to 8 presents colloid chemistry including simple history and basic concepts, diffusion and Brown Motion, sedimentation, osmotic pressure, optical properties, rheology properties, electric properties, emulsion, foam and gel, and so on; chapters 9 to provides interface chemistry theories including the surface of liquid, the surface of solution, and the surface of solid. This valuable book is the only one that presents colloid and interface chemistry from the water quality control perspective. This book was written for graduate students in the area of water treatment and environmental engineering, and it could be used as the reference for researchers and engineers in the same area. - Concise content makes this suitable for both teaching and learning - Focuses on water treatment technology and methods, links colloid and surface chemistry to water treatment applications - Not only addresses all the important physical-chemistry principles and theories, but also presents new developed knowledge on water treatment - Includes exercises, problems and solutions, which are very helpful for testing learning and understanding
Clarifying chemical processes in the environment is tantamount to creating a better and a safer planet. The chemistry that takes place within the natural world occurs not only in the bulk gaseous, liquid, and solid phases, but also in the region where two phases meet. This molecularly thin region between phases, also known as an interface, plays a significant role in various chemical processes because interfaces are ubiquitous in nature. Despite the significance of interfacial processes in environmental chemistry, investigating environmental interfaces experimentally has always been a challenge. Recent advances in nonlinear spectroscopy (NLS) have demonstrated that techniques such as sum frequency generation (SFG) and second harmonic generation (SHG) are unique in their ability to probe buried chemical interfaces. The theoretical and practical aspect of these techniques in probing environmental interfaces is the primary focus of this e-book. This e-book is geared toward curious and inquisitive minds eager to learn how molecules behave at the thin layers of chemical interfaces. A beautiful world, rich in unique insights into the interfacial environmental processes, awaits.