Interfaces of Electrical Contacts in Organic Semiconductor Devices
Author: Korhan Demirkan
Publisher: ProQuest
Published: 2008
Total Pages:
ISBN-13: 9780549752196
DOWNLOAD EBOOKProgress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski- Krastanov-type growth and high contact area. Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.