Light–Matter Interaction

Light–Matter Interaction

Author: Olaf Stenzel

Publisher: Springer Nature

Published: 2022-02-08

Total Pages: 558

ISBN-13: 3030871444

DOWNLOAD EBOOK

This book offers a didactic introduction to light–matter interactions at both the classical and semi-classical levels. Pursuing an approach that describes the essential physics behind the functionality of any optical element, it acquaints students with the broad areas of optics and photonics. Its rigorous, bottom-up approach to the subject, using model systems ranging from individual atoms and simple molecules to crystalline and amorphous solids, gradually builds up the reader’s familiarity and confidence with the subject matter. Throughout the book, the detailed mathematical treatment and examples of practical applications are accompanied by problems with worked-out solutions. In short, the book provides the most essential information for any graduate or advanced undergraduate student wishing to begin their course of study in the field of photonics, or to brush up on important concepts prior to an examination.


Photonics

Photonics

Author: Ralf Menzel

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 895

ISBN-13: 3662045214

DOWNLOAD EBOOK

Deals with the fundamental properties of photon and light beams, both experimentally and theoretically. It covers the essentials of linear interactions and most of the nonlinear interactions between light and matter in both the transparent and absorbing cases. About 4000 references open access to original literature.


Experimental Techniques in Nuclear and Particle Physics

Experimental Techniques in Nuclear and Particle Physics

Author: Stefaan Tavernier

Publisher: Springer Science & Business Media

Published: 2010-02-06

Total Pages: 316

ISBN-13: 3642008291

DOWNLOAD EBOOK

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.


QED

QED

Author: Richard P. Feynman

Publisher: Princeton University Press

Published: 2014-10-26

Total Pages: 193

ISBN-13: 140084746X

DOWNLOAD EBOOK

Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.


Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides

Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides

Author: Edbert Jarvis Sie

Publisher: Springer

Published: 2018-09-04

Total Pages: 0

ISBN-13: 9783319887999

DOWNLOAD EBOOK

This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.


Atom-Photon Interactions

Atom-Photon Interactions

Author: Claude Cohen-Tannoudji

Publisher: John Wiley & Sons

Published: 1998-03-23

Total Pages: 691

ISBN-13: 0471293369

DOWNLOAD EBOOK

Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.


Handbook of Particle Detection and Imaging

Handbook of Particle Detection and Imaging

Author: Claus Grupen

Publisher: Springer Science & Business Media

Published: 2012-01-08

Total Pages: 1251

ISBN-13: 3642132715

DOWNLOAD EBOOK

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.


Matter and Interactions

Matter and Interactions

Author: Ruth W. Chabay

Publisher: John Wiley & Sons

Published: 2011

Total Pages: 1128

ISBN-13: 0470503475

DOWNLOAD EBOOK

Matter and Interactions offers a modern curriculum for introductory physics (calculus-based). It presents physics the way practicing physicists view their discipline and integrates 20th Century physics and computational physics. The text emphasizes the small number of fundamental principles that underlie the behavior of matter, and models that can explain and predict a wide variety of physical phenomena. Matter and Interactions will be available as a single volume hardcover text and also two paperback volumes.


Light and Skin Interactions

Light and Skin Interactions

Author: Gladimir V. G. Baranoski

Publisher: Morgan Kaufmann

Published: 2010-03-04

Total Pages: 201

ISBN-13: 0123786444

DOWNLOAD EBOOK

Light and Skin Interactions immerses you in one of the most fascinating application areas of computer graphics: appearance simulation. The book first illuminates the fundamental biophysical processes that affect skin appearance, and reviews seminal related works aimed at applications in life and health sciences. It then examines four exemplary modeling approaches as well as definitive algorithms that can be used to generate realistic images depicting skin appearance. Despite its wide scope of simulation approaches, the book's content is presented in a concise manner, focusing on relevant practical aspects. What's more, these approaches can be successfully applied to a wide range of additional materials, such as eye tissue, hair, and water. - Allows you to understand and predict the qualitative and quantitative behavior of complex natural systems - A general background on tissue optics clarifies several confusing conceptual issues, saving you valuable time in the early stages of research - Includes complete code and data sources for the BioSpec model


Light-Matter Interactions Towards the Nanoscale

Light-Matter Interactions Towards the Nanoscale

Author: Maura Cesaria

Publisher: Springer Nature

Published: 2022-05-14

Total Pages: 348

ISBN-13: 9402421386

DOWNLOAD EBOOK

The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research. For example, this volume includes a chapter on the sensing of biological molecules with optical resonators (microspheres) combined with plasmonic systems, where the response this system are described in a fundamental and elegant manner using coupled mode theory. Symmetry plays a major role in the book. One chapter on time reversal symmetry in electromagnetic theory describes how to control the properties of light (e.g. scattering and directionality of the flow of light) in materials with certain topological invariants. Another chapter where symmetry is prominent reformulates, using a gentle and pedagogical approach, Maxwell’s Equations into a new set of fields that reveal a “handedness” symmetry in electromagnetic theory, which can be applied to photonic systems in, for example, the sensing of chiral molecules and understanding the conditions for zero reflection. Also, for students and researchers starting in the field of nanoplasmonics, the book includes a tutorial on the finite element time domain simulation of nanoplasmonic systems. Other topics include photonic systems for quantum computing, nanoplasmonics, and optical properties of nano and bulk materials. The authors take a pedagogical approach to their topic, making the book an excellent reference for graduate students and scientists starting in the fields of photonics or plasmonics.