This volume successfully and clearly examines how biophysical approaches can be used to study complex systems of reversibly interacting proteins. It deals with the methodology behind the research and shows how to synergistically incorporate several methodologies for use. Each chapter treats and introduces the reader to different biological systems, includes a brief summary of the physical principles, and mentions practical requirements.
This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.
A study of the thermodynamics of protein-protein and protein-ligand interactions. The author explains the energetics of protein interactions and gives a thorough account of the complicated biophysics that occur when the effects of multiple, complex molecules are taken into account.
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.
Proteins are the cell’s workers, their messengers and overseers. In these roles, proteins specifically bind small molecules, nucleic acid and other protein partners. Cellular systems are closely regulated and biologically significant changes in populations of particular protein complexes correspond to very small variations of their thermodynamics or kinetics of reaction. Interfering with the interactions of proteins is the dominant strategy in the development of new pharmaceuticals. Protein Ligand Interactions: Methods and Applications, Second Edition provides a complete introduction to common and emerging procedures for characterizing the interactions of individual proteins. From the initial discovery of natural substrates or potential drug leads, to the detailed quantitative understanding of the mechanism of interaction, all stages of the research process are covered with a focus on those techniques that are, or are anticipated to become, widely accessible and performable with mainstream commercial instrumentation. Written in the highly successful Methods in Molecular Biology series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Ligand Interactions: Methods and Applications, Second Edition serves as an ideal guide for researchers new to the field of biophysical characterization of protein interactions – whether they are beginning graduate students or experts in allied areas of molecular cell biology, microbiology, pharmacology, medicinal chemistry or structural biology.
In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.
Gabriel Waksman Institute of Structural Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, United Kingdom Address for correspondence: Professor Gabriel Waksman Institute of Structural Molecular Biology Birkbeck and University College London Malet Street London WC1E 7H United Kingdom Email: g. waksman@bbk. ac. uk and g. waksman@ucl. ac. uk Phone: (+44) (0) 207 631 6833 Fax: (+44) (0) 207 631 6833 URL: http://people. cryst. bbk. ac. uk/?ubcg54a Gabriel Waksman is Professor of Structural Molecular Biology at the Institute of Structural Molecular Biology at UCL/Birkbeck, of which he is also the director. Before joining the faculty of UCL and Birkbeck, he was the Roy and Diana Vagelos Professor of Biochemistry and Molecular Biophysics at the Washington University School of Medicine in St Louis (USA). The rapidly evolving ?eld of protein science has now come to realize the ubiquity and importance of protein–protein interactions. It had been known for some time that proteins may interact with each other to form functional complexes, but it was thought to be the property of only a handful of key proteins. However, with the advent of hi- throughput proteomics to monitor protein–protein interactions at an organism level, we can now safely state that protein–protein interactions are the norm and not the exception.