Interactions Between Charged Particles in a Magnetic Field

Interactions Between Charged Particles in a Magnetic Field

Author: Hrachya Nersisyan

Publisher: Springer Science & Business Media

Published: 2007-03-16

Total Pages: 192

ISBN-13: 3540698531

DOWNLOAD EBOOK

Focusses on the influence of a strong magnetic field on the interactions between charged particles in a many-body system. This work investigates two complementary approaches, the binary collision model and the dielectric theory in both analytical and numerical frameworks.


Adhesive Particle Flow

Adhesive Particle Flow

Author: Jeffery S. Marshall

Publisher: Cambridge University Press

Published: 2014-03-31

Total Pages: 361

ISBN-13: 1107032075

DOWNLOAD EBOOK

This is targeted at professionals and graduate students working in disciplines where flow of adhesive particles plays a significant role.


Energetic Charged-Particle Interactions with Atmospheres and Surfaces

Energetic Charged-Particle Interactions with Atmospheres and Surfaces

Author: Robert E. Johnson

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 235

ISBN-13: 3642483755

DOWNLOAD EBOOK

On attending a conference on the Jovian satellites at UCLA, I heard Lou Lanze rotti vigorously present the exciting data on the sputtering of water ice by Me V protons taken with W. L. Brown at AT&T Bell Labs. In his inimitable way he made clear that this new electronic sputtering process was very poorly under stood and was very important for surface properties of sattelites. I was immedia tely hooked, and have been working ever since with Lanzerotti, Brown, my col league at Virginia, John Boring, and Bo Sundqvist at Uppsala on understanding the ejection of material from surfaces and applying laboratory results to intere sting planetary problems. In the course of writing this book I also had the benefit of spending a semester with the Planetary Geosciences group in Hawaii, thanks to Tom McCord, a period of time with Doug Nash at JPL, and a period ot time with the group at Catania. The book was started with the encouragement of Lou Lanzerotti. The writing has gone slowly as the field has been changing rapidly. Even now I feel it is incom plete, as the interesting Halley dust data have just recently been interpreted in detail, Voyager has recently visited Neptune, and the data on Pluto are rapidly improving. However, most of the principles for plasma ion alteration of surfaces and gases have been established allowing, I hope, a coherent and useful frame work for incorporating both new laboratory and planetary data.


Semiconductor Optics and Transport Phenomena

Semiconductor Optics and Transport Phenomena

Author: Wilfried Schäfer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 498

ISBN-13: 3662046636

DOWNLOAD EBOOK

Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


Experimental Techniques in Nuclear and Particle Physics

Experimental Techniques in Nuclear and Particle Physics

Author: Stefaan Tavernier

Publisher: Springer Science & Business Media

Published: 2010-02-06

Total Pages: 316

ISBN-13: 3642008291

DOWNLOAD EBOOK

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.


Charged Particles

Charged Particles

Author: Malek Maaza

Publisher: BoD – Books on Demand

Published: 2019-02-20

Total Pages: 106

ISBN-13: 1789853958

DOWNLOAD EBOOK

A charged particle is a particle that carries an electric charge and can be discussed in many aspects. This book focuses on cutting-edge and important research topics such as flavor physics to search for new physics via charged particles that appear in different extensions of the standard model, as well as the analysis of ultra-high energy muons using the pair-meter technique. Also included in this book are the idea of the Eloisatron to PeVatron, the important research field of electrostatic waves in magnetized electron/positron plasmas, and the application of charge bodies.


Physics of the Sun

Physics of the Sun

Author: Dermott J. Mullan

Publisher: CRC Press

Published: 2022-09-13

Total Pages: 435

ISBN-13: 1000625079

DOWNLOAD EBOOK

With an emphasis on numerical modelling, Physics of the Sun: A First Course presents a quantitative examination of the physical structure of the Sun and the conditions of its extended atmosphere. It gives step-by-step instructions for calculating the numerical values of various physical quantities in different regions of the Sun. Fully updated throughout, with the latest results in solar physics, this second edition covers a wide range of topics on the Sun and stellar astrophysics, including the structure of the Sun, solar radiation, the solar atmosphere, and Sun-space interactions. It explores how the physical conditions in the visible surface of the Sun are determined by the opacity of the material in the atmosphere. It also presents the empirical properties of convection in the Sun, discusses the physical conditions which must be satisfied for nuclear reactions to occur in the core, and describes how radiation transports energy from the core outwards. This text enables a practical appreciation of the physical models of solar processes. Numerical modelling problems and step-by-step instructions are featured throughout, to empower students to calculate, using their own codes, the interior structure of different parts of the Sun and the frequencies of p-modes and g-modes. They encourage a firm grasp of the numerical values of actual physical parameters as a function of radial location in the Sun. It is an ideal introduction to solar physics for advanced undergraduate and graduate students in physics and astronomy, in addition to research professionals looking to incorporate modelling into their practises. Extensive bibliographies at the end of each chapter enable the reader to explore the latest research articles in the field. Features: Fully updated with the latest results from the spacecraft Hinode, Stereo, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), and Parker Solar Probe Presents step-by-step explanations for calculating numerical models of the photosphere, convection zone, and radiative interior with exercises and simulation problems to test learning Describes the structure of polytropic spheres and the acoustic power in the Sun and the process of thermal conduction in different physical conditions


Maxwell's Equations and Their Consequences

Maxwell's Equations and Their Consequences

Author: B. H. Chirgwin

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 171

ISBN-13: 1483156400

DOWNLOAD EBOOK

Elementary Electromagnetic Theory Volume 3: Maxwell's Equations and their Consequences is the third of three volumes that intend to cover electromagnetism and its potential theory. The third volume considers the implications of Maxwell's equations, such as electromagnetic radiation in simple cases, and its relation between Maxwell's equation and the Lorenz transformation. Included in this volume are chapters 11-14, which contain an in-depth discussion of the following topics: • Electromagnetic Waves • The Lorentz Invariance of Maxwell's Equation • Radiation • Motion of Charged Particles Intended to serve as an introduction to electromagnetism and potential theory, the book is for second, third, and fourth year undergraduates of physics and engineering, as they are included in their course of study. Do note that the authors assume that the readers are conversant with the basic ideas of vector analysis, including vector integral theorems.