Intelligent Systems for Healthcare Management and Delivery provides relevant and advanced methodological, technological, and scientific approaches related to the application of sophisticated exploitation of AI, as well as providing insight into the technologies and intelligent applications that have received growing attention in recent years such as medical imaging, EMR systems, and drug development assistance.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
With the growing use of new technologies and artificial intelligence (AI) applications, intelligent systems can be used to manage large amounts of existing data in healthcare domains. Having more intelligent methods for accessing data allows medical professionals to more efficiently identify the best medical practices and more concrete solutions for diagnosing and treating a multitude of rare diseases. Intelligent Systems for Healthcare Management and Delivery provides relevant and advanced methodological, technological, and scientific approaches related to the application of sophisticated exploitation of AI, as well as providing insight into the technologies and intelligent applications that have received growing attention in recent years such as medical imaging, EMR systems, and drug development assistance. This publication fosters a scientific debate for new healthcare intelligent systems and sophisticated approaches for enhanced healthcare services and is ideally designed for medical professionals, hospital staff, rehabilitation specialists, medical educators, and researchers.
The rediscovery of the potential of artificial intelligence (AI) to improve healthcare delivery and patient outcomes has led to an increasing application of AI techniques such as deep learning, computer vision, natural language processing, and robotics in the healthcare domain. Many governments and health authorities have prioritized the application of AI in the delivery of healthcare. Also, technological giants and leading universities have established teams dedicated to the application of AI in medicine. These trends will mean an expanded role for AI in the provision of healthcare. Yet, there is an incomplete understanding of what AI is and its potential for use in healthcare. This book discusses the different types of AI applicable to healthcare and their application in medicine, population health, genomics, healthcare administration, and delivery. Readers, especially healthcare professionals and managers, will find the book useful to understand the different types of AI and how they are relevant to healthcare delivery. The book provides examples of AI being applied in medicine, population health, genomics, healthcare administration, and delivery and how they can commence applying AI in their health services. Researchers and technology professionals will also find the book useful to note current trends in the application of AI in healthcare and initiate their own projects to enable the application of AI in healthcare/medical domains.
The goal of this book is to provide, in a friendly and refreshing manner, both theoretical concepts and practical techniques for the important and exciting field of Artificial Intelligence that can be directly applied to real-world healthcare problems. Healthcare – the final frontier. Lately, it seems like Pandora opened the box and evil was released into the world. Fortunately, there was one thing left in the box: hope. In recent decades, hope has been increasingly represented by Intelligent Decision Support Systems. Their continuing mission: to explore strange new diseases, to seek out new treatments and drugs, and to intelligently manage healthcare resources and patients. Hence, this book is designed for all those who wish to learn how to explore, analyze and find new solutions for the most challenging domain of all time: healthcare.
We are in the early stages of the next big platform shift in healthcare computing. Fueled by Artificial Intelligence (AI) and the Cloud, this shift is already transforming the way health and medical services are provided. As the industry transitions from static digital repositories to intelligent systems, there will be winners and losers in the race to innovate and automate the provision of services. Critical to success will be the role leaders play in shaping the use of AI to be less "artificial" and more "intelligent" in support of improving processes to deliver care and keep people healthy and productive across all care settings. This book defines key technical, process, people, and ethical issues that need to be understood and addressed in successfully planning and executing an enterprise-wide AI plan. It provides clinical and business leaders with a framework for moving organizations from the aspiration to execution of intelligent systems to improve clinical, operational, and financial performance.
Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. .
Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. - Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more - Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. - Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more
This edited book helps researchers and practitioners to understand e-health, m-healthcare architecture through IoT and the state of the art in IoT counter measures. This book provides a comprehensive discussion on a functional framework for IoT-based healthcare systems, intelligent medicine box, RFID technology, HMI, cognitive interpretation, BCI, remote health monitoring systems, wearable sensors, WBAN, healthcare analytics, machine learning (ML) techniques for IoT-enabled healthcare services, security and privacy issues in IoT-based healthcare monitoring systems. The book discusses integration of IoT with big data and cloud computing for solving several real-time problems by the use of smart healthcare applications. In these applications, the cloud computing provides a common workplace for IoT and big data, big data provides data analytics technology and IoT provides the source of data. It serves as a reference resource for researchers and practitioners in academia and industry.
Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.