Intelligent Systems and Control: Principles and Applications is a textbook for undergraduate level courses on intelligent control, intelligent systems, adaptive control, and non-linear control. The book covers primers in neural networks, fuzzy logic, and non-linear control so that readers can easily follow intelligent control techniques.
This book is concerned with Intelligent Control methods and applications. The field of intelligent control has been expanded very much during the recent years and a solid body of theoretical and practical results are now available. These results have been obtained through the synergetic fusion of concepts and techniques from a variety of fields such as automatic control, systems science, computer science, neurophysiology and operational research. Intelligent control systems have to perform anthropomorphic tasks fully autonomously or interactively with the human under known or unknown and uncertain environmental conditions. Therefore the basic components of any intelligent control system include cognition, perception, learning, sensing, planning, numeric and symbolic processing, fault detection/repair, reaction, and control action. These components must be linked in a systematic, synergetic and efficient way. Predecessors of intelligent control are adaptive control, self-organizing control, and learning control which are well documented in the literature. Typical application examples of intelligent controls are intelligent robotic systems, intelligent manufacturing systems, intelligent medical systems, and intelligent space teleoperators. Intelligent controllers must employ both quantitative and qualitative information and must be able to cope with severe temporal and spatial variations, in addition to the fundamental task of achieving the desired transient and steady-state performance. Of course the level of intelligence required in each particular application is a matter of discussion between the designers and users. The current literature on intelligent control is increasing, but the information is still available in a sparse and disorganized way.
This book introduces the development process, structural theories and research areas of intelligent control; explains the knowledge representations, searching and reasoning mechanisms as the fundamental techniques of intelligent control; studies the theoretical principles and architectures of various intelligent control systems; analyzes the paradigms of representative applications of intelligent control; and discusses the research and development trends of the intelligent control.From the general point of view, this book possesses the following features: updated research results both in theory and application that reflect the latest advances in intelligent control; closed connection between theory and practice that enables readers to use the principles to their case studies and practical projects; and comprehensive materials that helps readers in understanding and learning.
The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and single-candidate optimization techniques, while the chapter on neural networks now covers spiking networks and a range of recurrent networks. The book also provides extended coverage of fuzzy logic, including type-2 and fuzzy control systems. Example programs using rules and uncertainty are presented in an industry-standard format, so that you can run them yourself. The first part of the book describes key techniques of artificial intelligence—including rule-based systems, Bayesian updating, certainty theory, fuzzy logic (types 1 and 2), frames, objects, agents, symbolic learning, case-based reasoning, genetic algorithms, optimization algorithms, neural networks, hybrids, and the Lisp and Prolog languages. The second part describes a wide range of practical applications in interpretation and diagnosis, design and selection, planning, and control. The author provides sufficient detail to help you develop your own intelligent systems for real applications. Whether you are building intelligent systems or you simply want to know more about them, this book provides you with detailed and up-to-date guidance. Check out the significantly expanded set of free web-based resources that support the book at: http://www.adrianhopgood.com/aitoolkit/
This comprehensive treatment of the field of intelligent systems is written by two of the foremost authorities in the field. The authors clearly examine the theoretical and practical aspects of these systems. The book focuses on the NIST-RCS (Real-time Control System) model that has been used recently in the Mars Rover.
The emergence of fuzzy logic and its applications has dramatically changed the face of industrial control engineering. Over the last two decades, fuzzy logic has allowed control engineers to meet and overcome the challenges of developing effective controllers for increasingly complex systems with poorly defined dynamics. Today's engineers need a working knowledge of the principles and techniques of fuzzy logic-Intelligent Control provides it. The author first introduces the traditional control techniques and contrasts them with intelligent control. He then presents several methods of representing and processing knowledge and introduces fuzzy logic as one such method. He highlights the advantages of fuzzy logic over other techniques, indicates its limitations, and describes in detail a hierarchical control structure appropriate for use in intelligent control systems. He introduces a variety of applications, most in the areas of robotics and mechatronics but with others including air conditioning and process/production control. One appendix provides discussion of some advanced analytical concepts of fuzzy logic, another describes a commercially available software system for developing fuzzy logic application. Intelligent Control is filled with worked examples, exercises, problems, and references. No prior knowledge of the subject nor advanced mathematics are needed to comprehend much of the book, making it well-suited as a senior undergraduate or first-year graduate text and a convenient reference tool for practicing professionals.
As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.
Prostheses, assistive systems, and rehabilitation systems are essential to increasing the quality of life for people with disabilities. Research and development over the last decade has resulted in enormous advances toward that goal-none more so than the development of intelligent systems and technologies. In the first truly comprehensive book addressing intelligent technologies for the disabled, top experts from around the world provide an overview of this dynamic, rapidly evolving field. They present state-of-the-art information on the latest, innovative technologies and their applications in various systems designed to better the lives of the disabled. From the underlying principles to the design, practical applications, and assessment of results, Intelligent Systems and Technologies in Rehabilitation Engineering offers broad, pragmatic coverage of the field. It incorporates the most recent advances in sensory and limb prostheses, myoelectric control systems, circulatory systems, assistive technologies, and applications of virtual reality. Rapid progress demands a concerted effort to keep up with the latest developments so they can begin to serve their purpose and improve the lives of the disabled. By incorporating details of the latest and most important advances into one volume, Intelligent Systems and Technologies in Rehabilitation Engineering makes that undertaking essentially effortless.
The volume Software Engineering Perspectives and Application in Intelligent Systems presents new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of Software Engineering. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented. The 5th Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.
Ongoing advancements in modern technology have led to significant developments in intelligent systems. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Intelligent Systems: Concepts, Methodologies, Tools, and Applications contains a compendium of the latest academic material on the latest breakthroughs and recent progress in intelligent systems. Including innovative studies on information retrieval, artificial intelligence, and software engineering, this multi-volume book is an ideal source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of intelligent systems.