Intelligent Systems and Control: Principles and Applications is a textbook for undergraduate level courses on intelligent control, intelligent systems, adaptive control, and non-linear control. The book covers primers in neural networks, fuzzy logic, and non-linear control so that readers can easily follow intelligent control techniques.
This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.
This book is concerned with Intelligent Control methods and applications. The field of intelligent control has been expanded very much during the recent years and a solid body of theoretical and practical results are now available. These results have been obtained through the synergetic fusion of concepts and techniques from a variety of fields such as automatic control, systems science, computer science, neurophysiology and operational research. Intelligent control systems have to perform anthropomorphic tasks fully autonomously or interactively with the human under known or unknown and uncertain environmental conditions. Therefore the basic components of any intelligent control system include cognition, perception, learning, sensing, planning, numeric and symbolic processing, fault detection/repair, reaction, and control action. These components must be linked in a systematic, synergetic and efficient way. Predecessors of intelligent control are adaptive control, self-organizing control, and learning control which are well documented in the literature. Typical application examples of intelligent controls are intelligent robotic systems, intelligent manufacturing systems, intelligent medical systems, and intelligent space teleoperators. Intelligent controllers must employ both quantitative and qualitative information and must be able to cope with severe temporal and spatial variations, in addition to the fundamental task of achieving the desired transient and steady-state performance. Of course the level of intelligence required in each particular application is a matter of discussion between the designers and users. The current literature on intelligent control is increasing, but the information is still available in a sparse and disorganized way.
Providing a thorough introduction to the field of soft computing techniques, Intelligent Systems: Modeling, Optimization, and Control covers every major technique in artificial intelligence in a clear and practical style. This book highlights current research and applications, addresses issues encountered in the development of applied systems, and describes a wide range of intelligent systems techniques, including neural networks, fuzzy logic, evolutionary strategy, and genetic algorithms. The book demonstrates concepts through simulation examples and practical experimental results. Case studies are also presented from each field to facilitate understanding.
This comprehensive treatment of the field of intelligent systems is written by two of the foremost authorities in the field. The authors clearly examine the theoretical and practical aspects of these systems. The book focuses on the NIST-RCS (Real-time Control System) model that has been used recently in the Mars Rover.
Intelligent Systems involve a large class of systems which posses human-like capabilities such as learning, observation, perception, interpretation, reasoning under uncertainty, planning in known and unknown environments, decision making, and control action. The field of intelligent systems is actually a new interdisciplinary field which is the outcome of the interaction, cooperation and synergetic merging of classical fields such as system theory, control theory, artificial intelligence, information theory, operational research, soft computing, communications, linguistic theory, and others. Integrated intelligent decision and control systems involve three primary hierarchical levels, namely organization, coordination and execution levels. As we proceed from the be performed organization to the execution level, the precision about the jobs to increases and accordingly the intelligence required for these jobs decreases. This is in compliance with the principle of increasing precision with decreasing intelligence (IPOI) known from the management field and theoretically established by Saridis using information theory concepts. This book is concerned with intelligent systems and techniques and gives emphasis on the computational and processing issues. Control issues are not included here. The contributions of the book are presented in four parts as follows.
This book introduces the development process, structural theories and research areas of intelligent control; explains the knowledge representations, searching and reasoning mechanisms as the fundamental techniques of intelligent control; studies the theoretical principles and architectures of various intelligent control systems; analyzes the paradigms of representative applications of intelligent control; and discusses the research and development trends of the intelligent control.From the general point of view, this book possesses the following features: updated research results both in theory and application that reflect the latest advances in intelligent control; closed connection between theory and practice that enables readers to use the principles to their case studies and practical projects; and comprehensive materials that helps readers in understanding and learning.
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.
Soft computing is a branch of computing which, unlike hard computing, can deal with uncertain, imprecise and inexact data. The three constituents of soft computing are fuzzy-logic-based computing, neurocomputing, and genetic algorithms. Fuzzy logic contributes the capability of approximate reasoning, neurocomputing offers function approximation and learning capabilities, and genetic algorithms provide a methodology for systematic random search and optimization. These three capabilities are combined in a complementary and synergetic fashion.This book presents a cohesive set of contributions dealing with important issues and applications of soft computing in systems and control technology. The contributions include state-of-the-art material, mathematical developments, fresh results, and how-to-do issues. Among the problems studied via neural, fuzzy, neurofuzzy and genetic methodologies are: data fusion, reinforcement learning, approximation properties, multichannel imaging, signal processing, system optimization, gaming, and several forms of control.The book can serve as a reference for researchers and practitioners in the field. Readers can find in it a large amount of useful and timely information, and thus save considerable effort in searching for other scattered literature.
Intelligent control is a rapidly developing, complex and challenging field with great practical importance and potential. Because of the rapidly developing and interdisciplinary nature of the subject, there are only a few edited volumes consisting of research papers on intelligent control systems but little is known and published about the fundamentals and the general know-how in designing, implementing and operating intelligent control systems. Intelligent control system emerged from artificial intelligence and computer controlled systems as an interdisciplinary field. Therefore the book summarizes the fundamentals of knowledge representation, reasoning, expert systems and real-time control systems and then discusses the design, implementation verification and operation of real-time expert systems using G2 as an example. Special tools and techniques applied in intelligent control are also described including qualitative modelling, Petri nets and fuzzy controllers. The material is illlustrated with simple examples taken from the field of intelligent process control.