Robotic systems consist of object or scene recognition, vision-based motion control, vision-based mapping, and dense range sensing, and are used for identification and navigation. As these computer vision and robotic connections continue to develop, the benefits of vision technology including savings, improved quality, reliability, safety, and productivity are revealed. Robotic Vision: Technologies for Machine Learning and Vision Applications is a comprehensive collection which highlights a solid framework for understanding existing work and planning future research. This book includes current research on the fields of robotics, machine vision, image processing and pattern recognition that is important to applying machine vision methods in the real world.
Describes the significance towards developing intelligent robots and industrial automation with applications. The book presents state-of-the-art technologies on robotics research; and includes an array of recent investigations on navigation, motion planning of mobile robots, control of underactuated systems such as flexible robots.
Here is one of the first really thorough presentations on smart robots. Robots, machine vision systems, sensors, manipulators, expert systems, and artificial intelligence concepts combined in state-of-the-art computer integrated manufacturing systems. These "smart" robots increase produc tivity and improve the quality of our products. This comprehensive volume, which is extensively illustrated, provides a unique synthesis and overview of the emerging field of smart robots, the basic approaches for each of the constituents systems, the techniques used, applications, the descriptions of current hardware or software projects, a review of the state-of-the-art of the technology, current research and development efforts, and trends in the development of smart robots. All of the information has been compiled from a wide variety of knowledgeable sources and recent government reports. An extensive selection of photo graphs, diagrams and charts amplify this book. The contents of major chapters include: • Introduction to smart robots • Artificial intelligence for smart robots • Smart robot systems • Sensor-controlled robots • Machine vision systems • Robot manipulators • Natural language processing • Expert systems and • Computer integrated manufacturing Smart Robots presents the state-of-the-art in intelligent robots. It is designed to help the reader develop an understanding of industrial applications of smart robots as well as the new technological develop ments. Smart Robots is an outstanding introduction to the integration and application of machine vision systems, sensors, expert systems, and artificial intelligence technology.
The goal ofthe symposium, "Computer Vision and Sensor-Based Robots," held at the General Motors Research Laboratories on September 2S and 26, 1978, was to stimulate a closer interaction between people working in diverse areas and to discuss fundamental issues related to vision and robotics. This book contains the papers and general discussions of that symposium, the 22nd in an annual series covering different technical disciplines that are timely and of interest to General Motors as well as the technical community at large. The subject of this symposium remains timely because the cost of computer vision hardware continues to drop and there is increasing use of robots in manufacturing applications. Current industrial applications of computer vision range from simple systems that measure or compare to sophisticated systems for part location determination and inspection. Almost all industrial robots today work with known parts in known posi tions, and we are just now beginning to see the emergence of programmable automa tion in which the robot can react to its environment when stimulated by visual and force-touch sensor inputs. As discussed in the symposium, future advances will depend largely on research now underway in several key areas. Development of vision systems that can meet industrial speed and resolution requirements with a sense of depth and color is a necessary step.
Rapid advances in sensors, computers, and algorithms continue to fuel dramatic improvements in intelligent robots. In addition, robot vehicles are starting to appear in a number of applications. For example, they have been installed in public settings to perform such tasks as delivering items in hospitals and cleaning floors in supermarkets; recently, two small robot vehicles were launched to explore Mars.This book presents the latest advances in the principal fields that contribute to robotics. It contains contributions written by leading experts addressing topics such as Path and Motion Planning, Navigation and Sensing, Vision and Object Recognition, Environment Modeling, and others.
Bring a new degree of interconnectivity to your world by building your own intelligent robots Key Features Leverage fundamentals of AI and robotics Work through use cases to implement various machine learning algorithms Explore Natural Language Processing (NLP) concepts for efficient decision making in robots Book DescriptionArtificial Intelligence for Robotics starts with an introduction to Robot Operating Systems (ROS), Python, robotic fundamentals, and the software and tools that are required to start out with robotics. You will learn robotics concepts that will be useful for making decisions, along with basic navigation skills. As you make your way through the chapters, you will learn about object recognition and genetic algorithms, which will teach your robot to identify and pick up an irregular object. With plenty of use cases throughout, you will explore natural language processing (NLP) and machine learning techniques to further enhance your robot. In the concluding chapters, you will learn about path planning and goal-oriented programming, which will help your robot prioritize tasks. By the end of this book, you will have learned to give your robot an artificial personality using simulated intelligence.What you will learn Get started with robotics and artificial intelligence Apply simulation techniques to give your robot an artificial personality Understand object recognition using neural networks and supervised learning techniques Pick up objects using genetic algorithms for manipulation Teach your robot to listen using NLP via an expert system Use machine learning and computer vision to teach your robot how to avoid obstacles Understand path planning, decision trees, and search algorithms in order to enhance your robot Who this book is for If you have basic knowledge about robotics and want to build or enhance your existing robot’s intelligence, then Artificial Intelligence for Robotics is for you. This book is also for enthusiasts who want to gain knowledge of AI and robotics.
This book contains a selection of papers which were presented at the Vision Interface '92 Conference. It also includes several invited articles from prominent researchers in the field, suggesting future directions in Computer Vision.
In this book, we look at how cluster technology can be leveraged to build better robots. Algorithms and approaches in key areas of robotics and computer vision, such as map building, path planning, target tracking, action selection and learning, are reviewed and cluster implementations for these are presented. The objective of the book is to give professionals working in the beowulf cluster or robotics and computer vision fields a concrete view of the strong synergy between the areas as well as to spur further fruitful exploitation of this connection. The book is written at a level appropriate for an advanced undergraduate or graduate student. The key concepts in robotics, computer vision and cluster computing are introduced before being used to make the text useful to a wide audience in these fields.
A comprehensive survey of artificial intelligence algorithms and programming organization for robot systems, combining theoretical rigor and practical applications. This textbook offers a comprehensive survey of artificial intelligence (AI) algorithms and programming organization for robot systems. Readers who master the topics covered will be able to design and evaluate an artificially intelligent robot for applications involving sensing, acting, planning, and learning. A background in AI is not required; the book introduces key AI topics from all AI subdisciplines throughout the book and explains how they contribute to autonomous capabilities. This second edition is a major expansion and reorganization of the first edition, reflecting the dramatic advances made in AI over the past fifteen years. An introductory overview provides a framework for thinking about AI for robotics, distinguishing between the fundamentally different design paradigms of automation and autonomy. The book then discusses the reactive functionality of sensing and acting in AI robotics; introduces the deliberative functions most often associated with intelligence and the capability of autonomous initiative; surveys multi-robot systems and (in a new chapter) human-robot interaction; and offers a “metaview” of how to design and evaluate autonomous systems and the ethical considerations in doing so. New material covers locomotion, simultaneous localization and mapping, human-robot interaction, machine learning, and ethics. Each chapter includes exercises, and many chapters provide case studies. Endnotes point to additional reading, highlight advanced topics, and offer robot trivia.
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.