Introduction to Reaction-Diffusion Equations

Introduction to Reaction-Diffusion Equations

Author: King-Yeung Lam

Publisher: Springer Nature

Published: 2022-12-01

Total Pages: 316

ISBN-13: 3031204220

DOWNLOAD EBOOK

This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.


Quantitative Ecology and Evolutionary Biology

Quantitative Ecology and Evolutionary Biology

Author: Otso Ovaskainen

Publisher: Oxford University Press

Published: 2016

Total Pages: 301

ISBN-13: 0198714866

DOWNLOAD EBOOK

This is an integration of empirical data and theory in quantitative ecology and evolution through the use of mathematical models and statistical methods.


Transport Equations in Biology

Transport Equations in Biology

Author: Benoît Perthame

Publisher: Springer Science & Business Media

Published: 2006-12-14

Total Pages: 206

ISBN-13: 3764378425

DOWNLOAD EBOOK

This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.


Dynamics Of Cancer: Mathematical Foundations Of Oncology

Dynamics Of Cancer: Mathematical Foundations Of Oncology

Author: Dominik Wodarz

Publisher: World Scientific

Published: 2014-04-24

Total Pages: 533

ISBN-13: 9814566381

DOWNLOAD EBOOK

The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.


Delay Differential Equations

Delay Differential Equations

Author: Yang Kuang

Publisher: Academic Press

Published: 1993-03-05

Total Pages: 413

ISBN-13: 0080960022

DOWNLOAD EBOOK

Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.


Integrodifference Equations in Spatial Ecology

Integrodifference Equations in Spatial Ecology

Author: Frithjof Lutscher

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 390

ISBN-13: 3030292940

DOWNLOAD EBOOK

This book is the first thorough introduction to and comprehensive treatment of the theory and applications of integrodifference equations in spatial ecology. Integrodifference equations are discrete-time continuous-space dynamical systems describing the spatio-temporal dynamics of one or more populations. The book contains step-by-step model construction, explicitly solvable models, abstract theory and numerical recipes for integrodifference equations. The theory in the book is motivated and illustrated by many examples from conservation biology, biological invasions, pattern formation and other areas. In this way, the book conveys the more general message that bringing mathematical approaches and ecological questions together can generate novel insights into applications and fruitful challenges that spur future theoretical developments. The book is suitable for graduate students and experienced researchers in mathematical ecology alike.


Eco-Evolutionary Dynamics

Eco-Evolutionary Dynamics

Author:

Publisher: Academic Press

Published: 2014-08-12

Total Pages: 392

ISBN-13: 0128014334

DOWNLOAD EBOOK

The theme of this volume is to discuss Eco-evolutionary Dynamics. - Updates and informs the reader on the latest research findings - Written by leading experts in the field - Highlights areas for future investigation


Nonlinear Dynamics and Evolution Equations

Nonlinear Dynamics and Evolution Equations

Author: Hermann Brunner

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 322

ISBN-13: 0821837214

DOWNLOAD EBOOK

The papers in this volume reflect a broad spectrum of current research activities on the theory and applications of nonlinear dynamics and evolution equations. They are based on lectures given during the International Conference on Nonlinear Dynamics and Evolution Equations at Memorial University of Newfoundland, St. John's, NL, Canada, July 6-10, 2004. This volume contains thirteen invited and refereed papers. Nine of these are survey papers, introducing the reader to, anddescribing the current state of the art in major areas of dynamical systems, ordinary, functional and partial differential equations, and applications of such equations in the mathematical modelling of various biological and physical phenomena. These papers are complemented by four research papers thatexamine particular problems in the theory and applications of dynamical systems. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).