Genomics technologies revolutionised biomedicine research, but the genome alone is not sufficient to capture biological complexity. Postgenomic methods, typically based on mass spectrometry, comprise the analysis of metabolites, lipids, and proteins and are an essential complement to genomics and transcriptomics. Multidimensional omics is becoming established to provide accurate and comprehensive state descriptions. This book covers the latest methodological developments for, and applications of integrative multi-omics in biomedical research.
A reflection of the explosion of research and development in this field, OMICS: Biomedical Perspectives and Applications explores applications of omics in bioinformatics, cancer research and therapy, diabetes research, plant science, molecular biology, and neurosciences. A select editorial panel of experts discusses their cutting edge omics researc
This book is written by leading researchers in the fields about the intersection of genetics and metabolomics which can lead to more comprehensive studies of inborn variation of metabolism.
With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.
Technological advances in generated molecular and cell biological data are transforming biomedical research. Sequencing, multi-omics and imaging technologies are likely to have deep impact on the future of medical practice. In parallel to technological developments, methodologies to gather, integrate, visualize and analyze heterogeneous and large-scale data sets are needed to develop new approaches for diagnosis, prognosis and therapy. Systems Medicine: Integrative, Qualitative and Computational Approaches is an innovative, interdisciplinary and integrative approach that extends the concept of systems biology and the unprecedented insights that computational methods and mathematical modeling offer of the interactions and network behavior of complex biological systems, to novel clinically relevant applications for the design of more successful prognostic, diagnostic and therapeutic approaches. This 3 volume work features 132 entries from renowned experts in the fields and covers the tools, methods, algorithms and data analysis workflows used for integrating and analyzing multi-dimensional data routinely generated in clinical settings with the aim of providing medical practitioners with robust clinical decision support systems. Importantly the work delves into the applications of systems medicine in areas such as tumor systems biology, metabolic and cardiovascular diseases as well as immunology and infectious diseases amongst others. This is a fundamental resource for biomedical students and researchers as well as medical practitioners who need to need to adopt advances in computational tools and methods into the clinical practice. Encyclopedic coverage: ‘one-stop’ resource for access to information written by world-leading scholars in the field of Systems Biology and Systems Medicine, with easy cross-referencing of related articles to promote understanding and further research Authoritative: the whole work is authored and edited by recognized experts in the field, with a range of different expertise, ensuring a high quality standard Digitally innovative: Hyperlinked references and further readings, cross-references and diagrams/images will allow readers to easily navigate a wealth of information
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
This book explains omics at the most basic level, including how this new concept can be properly utilized in molecular and systems biology research. Most reviews and books on this topic have mainly focused on the technicalities and complexity of each omics’ platform, impeding readers to wholly understand its fundamentals and applications. This book tackles such gap and will be most beneficial to novice in this area, university students and even researchers. Basic workflow and practical guidance in each omics are also described, such that scientists can properly design their experimentation effectively. Furthermore, how each omics platform has been conducted in our institute (INBIOSIS) is also detailed, a comprehensive example on this topic to further enhance readers’ understanding. The contributors of each chapter have utilized the platforms in various manner within their own research and beyond. The contributors have also been interactively integrated and combined these different omics approaches in their research, being able to systematically write each chapter with the conscious knowledge of other inter-relating topics of omics. The potential readers and audience of this book can come from undergraduate and postgraduate students who wish to extend their comprehension in the topics of molecular biology and big data analysis using omics platforms. Furthermore, researchers and scientists whom may have expertise in basic molecular biology can extend their experimentation using the omics technologies and workflow outlined in this book, benefiting their research in the long run.
Due to population aging, calcific aortic valve disease (CAVD) has become the most common heart valve disease in Western countries. No therapies exist to slow this disease progression, and surgical valve replacement is the only effective treatment. Calcific Aortic Valve Disease covers the contemporary understanding of basic valve biology and the mechanisms of CAVD, provides novel insights into the genetics, proteomics, and metabolomics of CAVD, depicts new strategies in heart valve tissue engineering and regenerative medicine, and explores current treatment approaches. As we are on the verge of understanding the mechanisms of CAVD, we hope that this book will enable readers to comprehend our current knowledge and focus on the possibility of preventing disease progression in the future.
This book brings together contributions from global experts who have helped to facilitate the exciting and rapid advances that are taking place in microbial metabolomics. The main application of this field is in clinical and veterinary microbiology, but there is a great potential to apply metabolomics to help to better understand complex biological systems that are dominated by multiple-species microbial populations exposed to changing growth and nutritional conditions. In particular, environmental (e.g., water, soil), food (e.g., microbial spoilage, food pathogens), and agricultural and industrial applications are seen as developing areas for microbial metabolomics. As such, the book includes contributions with clinical, environmental, and industrial perspectives.