Essentials of Integration Theory for Analysis

Essentials of Integration Theory for Analysis

Author: Daniel W. Stroock

Publisher: Springer Nature

Published: 2020-11-24

Total Pages: 296

ISBN-13: 303058478X

DOWNLOAD EBOOK

When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration. Appropriate as a primary text for a one-semester graduate course in integration theory, this GTM is also useful for independent study. A complete solutions manual is available for instructors who adopt the text for their courses. This second edition has been revised as follows: §2.2.5 and §8.3 have been substantially reworked. New topics have been added. As an application of the material about Hermite functions in §7.3.2, the author has added a brief introduction to Schwartz's theory of tempered distributions in §7.3.4. Section §7.4 is entirely new and contains applications, including the Central Limit Theorem, of Fourier analysis to measures. Related to this are subsections §8.2.5 and §8.2.6, where Lévy's Continuity Theorem and Bochner's characterization of the Fourier transforms of Borel probability on RN are proven. Subsection 8.1.2 is new and contains a proof of the Hahn Decomposition Theorem. Finally, there are several new exercises, some covering material from the original edition and others based on newly added material.


Geometric Integration Theory

Geometric Integration Theory

Author: Hassler Whitney

Publisher: Princeton University Press

Published: 2015-12-08

Total Pages: 404

ISBN-13: 1400877571

DOWNLOAD EBOOK

A complete theory of integration as it appears in geometric and physical problems must include integration over oriented r-dimensional domains in n-space; both the integrand and the domain may be variable. This is the primary subject matter of the present book, designed to bring out the underlying geometric and analytic ideas and to give clear and complete proofs of the basic theorems. Originally published in 1957. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


A Modern Theory of Integration

A Modern Theory of Integration

Author: Robert G. Bartle

Publisher: American Mathematical Soc.

Published: 2001-03-21

Total Pages: 480

ISBN-13: 9780821883853

DOWNLOAD EBOOK

The theory of integration is one of the twin pillars on which analysis is built. The first version of integration that students see is the Riemann integral. Later, graduate students learn that the Lebesgue integral is ``better'' because it removes some restrictions on the integrands and the domains over which we integrate. However, there are still drawbacks to Lebesgue integration, for instance, dealing with the Fundamental Theorem of Calculus, or with ``improper'' integrals. This book is an introduction to a relatively new theory of the integral (called the ``generalized Riemann integral'' or the ``Henstock-Kurzweil integral'') that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Although this integral includes that of Lebesgue, its definition is very close to the Riemann integral that is familiar to students from calculus. One virtue of the new approach is that no measure theory and virtually no topology is required. Indeed, the book includes a study of measure theory as an application of the integral. Part 1 fully develops the theory of the integral of functions defined on a compact interval. This restriction on the domain is not necessary, but it is the case of most interest and does not exhibit some of the technical problems that can impede the reader's understanding. Part 2 shows how this theory extends to functions defined on the whole real line. The theory of Lebesgue measure from the integral is then developed, and the author makes a connection with some of the traditional approaches to the Lebesgue integral. Thus, readers are given full exposure to the main classical results. The text is suitable for a first-year graduate course, although much of it can be readily mastered by advanced undergraduate students. Included are many examples and a very rich collection of exercises. There are partial solutions to approximately one-third of the exercises. A complete solutions manual is available separately.


A Course on Integration Theory

A Course on Integration Theory

Author: Nicolas Lerner

Publisher: Springer

Published: 2014-07-09

Total Pages: 504

ISBN-13: 3034806949

DOWNLOAD EBOOK

This textbook provides a detailed treatment of abstract integration theory, construction of the Lebesgue measure via the Riesz-Markov Theorem and also via the Carathéodory Theorem. It also includes some elementary properties of Hausdorff measures as well as the basic properties of spaces of integrable functions and standard theorems on integrals depending on a parameter. Integration on a product space, change of variables formulas as well as the construction and study of classical Cantor sets are treated in detail. Classical convolution inequalities, such as Young's inequality and Hardy-Littlewood-Sobolev inequality are proven. The Radon-Nikodym theorem, notions of harmonic analysis, classical inequalities and interpolation theorems, including Marcinkiewicz's theorem, the definition of Lebesgue points and Lebesgue differentiation theorem are further topics included. A detailed appendix provides the reader with various elements of elementary mathematics, such as a discussion around the calculation of antiderivatives or the Gamma function. The appendix also provides more advanced material such as some basic properties of cardinals and ordinals which are useful in the study of measurability.​


Geometric Integration Theory

Geometric Integration Theory

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

Published: 2008-12-15

Total Pages: 344

ISBN-13: 0817646795

DOWNLOAD EBOOK

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.


Gendering European Integration Theory

Gendering European Integration Theory

Author: Gabriele Abels

Publisher: Verlag Barbara Budrich

Published: 2016-05-23

Total Pages: 304

ISBN-13: 3847402560

DOWNLOAD EBOOK

The authors engage a dialogue between European integration theories and gender studies. The contributions illustrate where and how gender scholarship has made creative use of integration theories and thus contributes to a vivid theoretical debate. The chapters are designed to make gender scholarship more visible to integration theory and, in this way stimulates the broader theoretical debates. Investigating the whole range of integration theory with a gender lens, the authors illustrate if and how gender scholarship has made or can make creative use of integration theories.


European Integration Theory

European Integration Theory

Author: Antje Wiener

Publisher: Oxford University Press

Published: 2019-12-19

Total Pages: 355

ISBN-13: 0198737319

DOWNLOAD EBOOK

With coverage of both traditional and critical theories and approaches to European integration and their application, this is the most comprehensive textbook on European integration theory and an essential guide for all students and scholars interested in the subject. Throughout the text, a team of leading international scholars demonstrate the current relevance of integration theory as they apply these approaches to real-world developments and crises in the contemporary European Union.


Convex Integration Theory

Convex Integration Theory

Author: David Spring

Publisher: Springer Science & Business Media

Published: 2010-12-02

Total Pages: 219

ISBN-13: 3034800606

DOWNLOAD EBOOK

§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.


The Theory of Measures and Integration

The Theory of Measures and Integration

Author: Eric M. Vestrup

Publisher: John Wiley & Sons

Published: 2009-09-25

Total Pages: 622

ISBN-13: 0470317957

DOWNLOAD EBOOK

An accessible, clearly organized survey of the basic topics of measure theory for students and researchers in mathematics, statistics, and physics In order to fully understand and appreciate advanced probability, analysis, and advanced mathematical statistics, a rudimentary knowledge of measure theory and like subjects must first be obtained. The Theory of Measures and Integration illuminates the fundamental ideas of the subject-fascinating in their own right-for both students and researchers, providing a useful theoretical background as well as a solid foundation for further inquiry. Eric Vestrup's patient and measured text presents the major results of classical measure and integration theory in a clear and rigorous fashion. Besides offering the mainstream fare, the author also offers detailed discussions of extensions, the structure of Borel and Lebesgue sets, set-theoretic considerations, the Riesz representation theorem, and the Hardy-Littlewood theorem, among other topics, employing a clear presentation style that is both evenly paced and user-friendly. Chapters include: * Measurable Functions * The Lp Spaces * The Radon-Nikodym Theorem * Products of Two Measure Spaces * Arbitrary Products of Measure Spaces Sections conclude with exercises that range in difficulty between easy "finger exercises"and substantial and independent points of interest. These more difficult exercises are accompanied by detailed hints and outlines. They demonstrate optional side paths in the subject as well as alternative ways of presenting the mainstream topics. In writing his proofs and notation, Vestrup targets the person who wants all of the details shown up front. Ideal for graduate students in mathematics, statistics, and physics, as well as strong undergraduates in these disciplines and practicing researchers, The Theory of Measures and Integration proves both an able primary text for a real analysis sequence with a focus on measure theory and a helpful background text for advanced courses in probability and statistics.