Integration of Renewables in Power Systems by Multi-Energy System Interaction

Integration of Renewables in Power Systems by Multi-Energy System Interaction

Author: Birgitte Bak-Jensen

Publisher: MDPI

Published: 2021-04-12

Total Pages: 358

ISBN-13: 3036503420

DOWNLOAD EBOOK

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.


Integration of Renewable Energy Sources Into the Power Grid Through PowerFactory

Integration of Renewable Energy Sources Into the Power Grid Through PowerFactory

Author: Morteza Zare Oskouei

Publisher: Springer Nature

Published: 2020-05-19

Total Pages: 175

ISBN-13: 3030443760

DOWNLOAD EBOOK

This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities.


Modeling Power Electronics and Interfacing Energy Conversion Systems

Modeling Power Electronics and Interfacing Energy Conversion Systems

Author: M. Godoy Simoes

Publisher: John Wiley & Sons

Published: 2016-09-16

Total Pages: 345

ISBN-13: 1119058279

DOWNLOAD EBOOK

Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.


Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty

Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty

Author: Qiuwei Wu

Publisher: Elsevier

Published: 2021-09-07

Total Pages: 372

ISBN-13: 0128241152

DOWNLOAD EBOOK

Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty discusses core concepts, advanced modeling and key operation strategies for integrated multi-energy systems geared for use in optimal operation. The book particularly focuses on reviewing novel operating strategies supported by relevant code in MATLAB and GAMS. It covers foundational concepts, key challenges and opportunities in operational implementation, followed by discussions of conventional approaches to modeling electricity, heat and gas networks. This modeling is the base for more detailed operation strategies for optimal operation of integrated multi-energy systems under uncertainty covered in the latter part of the work. - Reviews advanced modeling approaches relevant to the integration of electricity, heat and gas systems in operation studies - Covers stochastic and robust optimal operation of integrated multi-energy systems - Evaluates MPC based, real-time dispatch of integrated multi-energy systems - Considers uncertainty modeling for stochastic and robust optimization - Assesses optimal operation and real-time dispatch for multi-energy building complexes


Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems

Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems

Author: Mohammadreza Daneshvar

Publisher: John Wiley & Sons

Published: 2024-02-07

Total Pages: 484

ISBN-13: 1394188773

DOWNLOAD EBOOK

Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems A timely introduction to the revolutionary technologies reshaping the global energy market The search for more efficient and sustainable ways to meet society’s energy requirements has driven recent technological innovation on an unprecedented scale. The energy needs of a growing population coupled with concerns about climate change have posed unique challenges that necessitate novel energy technologies. The transition of modern energy grids towards multi-energy networks, or MENs, promises to be a fundamental transformation in the way we energize our world. Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems presents an overview of the foundational methodologies and technologies underlying MENs and the groundbreaking vehicle systems that bring them together. With the inclusion of transformative technologies from radically different sectors, the content covered in this book will be of high value for researchers interested in future energy systems. Readers will also find: In-depth examination of the process of switching from conventional transportation systems to modern intelligent transportation ones Detailed discussions of topics including self-driving vehicles, hybrid energy technologies, grid-edge, and more The introduction of a holistic, reconfigurable system adaptable to vastly different conditions and forms of network interaction Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems is useful for researchers in electrical, mechanical, civil, architectural, or environmental engineering, as well as for telecommunications researchers and for any industry professionals with an interest in energy transportation.


Energy Storage for Modern Power System Operations

Energy Storage for Modern Power System Operations

Author: Sandeep Dhundhara

Publisher: John Wiley & Sons

Published: 2021-10-19

Total Pages: 354

ISBN-13: 111976033X

DOWNLOAD EBOOK

ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage


Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems

Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems

Author: Mohamed Abdelaziz Mohamed

Publisher: Springer

Published: 2017-08-03

Total Pages: 91

ISBN-13: 3319647954

DOWNLOAD EBOOK

This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system’s design and sizing. It also helps readers understand the dispatch methodology and how to connect the system’s different components, their modeling, and the cost analysis of the system.


Applications of Modern Heuristic Optimization Methods in Power and Energy Systems

Applications of Modern Heuristic Optimization Methods in Power and Energy Systems

Author: Kwang Y. Lee

Publisher: John Wiley & Sons

Published: 2020-04-14

Total Pages: 896

ISBN-13: 1119602297

DOWNLOAD EBOOK

Reviews state-of-the-art technologies in modern heuristic optimization techniques and presents case studies showing how they have been applied in complex power and energy systems problems Written by a team of international experts, this book describes the use of metaheuristic applications in the analysis and design of electric power systems. This includes a discussion of optimum energy and commitment of generation (nonrenewable & renewable) and load resources during day-to-day operations and control activities in regulated and competitive market structures, along with transmission and distribution systems. Applications of Modern Heuristic Optimization Methods in Power and Energy Systems begins with an introduction and overview of applications in power and energy systems before moving on to planning and operation, control, and distribution. Further chapters cover the integration of renewable energy and the smart grid and electricity markets. The book finishes with final conclusions drawn by the editors. Applications of Modern Heuristic Optimization Methods in Power and Energy Systems: Explains the application of differential evolution in electric power systems' active power multi-objective optimal dispatch Includes studies of optimization and stability in load frequency control in modern power systems Describes optimal compliance of reactive power requirements in near-shore wind power plants Features contributions from noted experts in the field Ideal for power and energy systems designers, planners, operators, and consultants, Applications of Modern Heuristic Optimization Methods in Power and Energy Systems will also benefit engineers, software developers, researchers, academics, and students.


Renewable Energy in Power Systems

Renewable Energy in Power Systems

Author: David Infield

Publisher: John Wiley & Sons

Published: 2019-12-02

Total Pages: 351

ISBN-13: 1118788583

DOWNLOAD EBOOK

An up to date account of renewable sources of electricity generation and their integration into power systems With the growth in installed capacity of renewable energy (RE) generation, many countries such as the UK are relying on higher levels of RE generation to meet targets for reduced greenhouse gas emissions. In the face of this, the integration issue is now of increasing concern, in particular to system operators. This updated text describes the individual renewable technologies and their power generation characteristics alongside an expanded introduction to power systems and the challenges posed by high levels of penetrations from such technologies, together with an account of technologies and changes to system operation that can ease RE integration. Features of this edition: Covers power conditioning, the characteristics of RE generators, with emphasis on their time varying nature, and the use of power electronics in interfacing RE sources to grids Outlines up to date RE integration issues such as power flow in networks supplied from a combination of conventional and renewable energy sources Updated coverage of the economics of power generation and the role of markets in delivering investment in sustainable solutions Considers the challenge of maintaining power balance in a system with increasing RE input, including recent moves toward power system frequency support from RE sources Offers an insightful perspective on the shape of future power systems including offshore networks and demand side management Includes worked examples that enhance this edition’s suitability as a textbook for introductory courses in RE systems technology Firmly established as an essential reference, the Second Edition of Renewable Energy in Power Systems will prove a real asset to engineers and others involved in both the traditional power and fast growing renewables sector. This text should also be of particular benefit to students of electrical power engineering and will additionally appeal to non-specialists through the inclusion of background material covering the basics of electricity generation.


Analytics and Optimization for Renewable Energy Integration

Analytics and Optimization for Renewable Energy Integration

Author: Ning Zhang

Publisher: CRC Press

Published: 2019-02-21

Total Pages: 317

ISBN-13: 0429847696

DOWNLOAD EBOOK

The scope of this book covers the modeling and forecast of renewable energy and operation and planning of power system with renewable energy integration.The first part presents mathematical theories of stochastic mathematics; the second presents modeling and analytic techniques for renewable energy generation; the third provides solutions on how to handle the uncertainty of renewable energy in power system operation. It includes advanced stochastic unit commitment models to acquire the optimal generation schedule under uncertainty, efficient algorithms to calculate the probabilistic power, and an efficient operation strategy for renewable power plants participating in electricity markets.