This volume comprises the proceedings of the 10th Oxford Conference held at Lake Louise, Alberta, Canada, in September, 2006. It contains the most up-to-date research in cardio-respiratory control and its content spans the disciplines of respiratory physiology, neurobiology, modeling, and biomedical engineering. The volume will be of interest to clinicians working with patients with breathing disorders.
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
An innovative, organ-specific text that blends basic science with the fundamentals of clinical medicine Part of the Human Organ Systems series, Respiratory: An Integrated Approach skillfully bridges the gap between the science and practice of medicine. This beautifully illustrated book seamlessly integrates the core elements of cell biology, anatomy, physiology, pharmacology, and pathology with clinical medicine. It is the perfect companion for medical students transitioning to their clinical years, as well as for practicing physicians who need a user-friendly update on the basic science underlying the practice of clinical medicine. Features and highlights include: Detailed learning objectives clearly state learning goals Key concepts are emphasized in every chapter The latest developments in the field are incorporated throughout the text Numerous high-quality illustrations with detailed legends clarify important or difficult concepts Clinical Correlations highlight the clinical implications of basic science Each chapter is accompanied by an annotated bibliography to enhance the learning experience and provide an overview of the critical literature in the field End-of-chapter case-based questions with detailed explanations reinforce important concepts and assess understanding of the material A valuable Glossary of common phrases, terms, abbreviations, and acronyms
This is an integrated textbook on the respiratory system, covering the anatomy, physiology and biochemistry of the system, all presented in a clinically relevant context appropriate for the first two years of the medical student course. - One of the seven volumes in the Systems of the Body series. - Concise text covers the core anatomy, physiology and biochemistry in an integrated manner as required by system- and problem-based medical courses. - The basic science is presented in the clinical context in a way appropriate for the early part of the medical course. - There is a linked website providing self-assessment material ideal for examination preparation.
Hopefully, this book will be taken off of the shelf frequently to be studied carefully over many years. More than 40 researchers were involved in this project, which examines respiration, circulation, and metabolism from ?sh to the land vertebrates, including human beings. A breathable and stable atmosphere ?rst appeared about 500 million years ago. Oxygen levels are not stable in aquatic environments and exclusively water-breathing ?sh must still cope with the ever-changing levels of O 2 and with large temperature changes. This is re?ected in their sophisticated count- current systems, with high O extraction and internal and external O receptors. 2 2 The conquest for the terrestrial environment took place in the late Devonian period (355–359 million years ago), and recent discoveries portray the gradual transitional evolution of land vertebrates. The oxygen-rich and relatively stable atmospheric conditionsimpliedthatoxygen-sensingmechanismswererelativelysimpleandl- gain compared with acid–base regulation. Recently, physiology has expanded into related ?elds such as biochemistry, molecular biology, morphology and anatomy. In the light of the work in these ?elds, the introduction of DNA-based cladograms, which can be used to evaluate the likelihood of land vertebrates and lung?sh as a sister group, could explain why their cardio-respiratory control systems are similar. The diffusing capacity of a duck lung is 40 times higher than that of a toad or lung?sh. Certainly, some animals have evolved to rich high-performance levels.
Lung disease affects more than 600 million people worldwide. While some of these lung diseases have an obvious developmental component, there is growing appreciation that processes and pathways critical for normal lung development are also important for postnatal tissue homeostasis and are dysregulated in lung disease. This book provides an authoritative review of fetal and neonatal lung development and is designed to provide a diverse group of scientists, spanning the basic to clinical research spectrum, with the latest developments on the cellular and molecular mechanisms of normal lung development and injury-repair processes, and how they are dysregulated in disease. The book covers genetics, omics, and systems biology as well as new imaging techniques that are transforming studies of lung development. The reader will learn where the field of lung development has been, where it is presently, and where it is going in order to improve outcomes for patients with common and rare lung diseases.
Edited and authored by a wealth of international experts in neuroscience and related disciplines, this key new resource aims to offer medical students and graduate researchers around the world a comprehensive introduction and overview of modern neuroscience. Neuroscience research is certain to prove a vital element in combating mental illness in its various incarnations, a strategic battleground in the future of medicine, as the prevalence of mental disorders is becoming better understood each year. Hundreds of millions of people worldwide are affected by mental, behavioral, neurological and substance use disorders. The World Health Organization estimated in 2002 that 154 million people globally suffer from depression and 25 million people from schizophrenia; 91 million people are affected by alcohol use disorders and 15 million by drug use disorders. A more recent WHO report shows that 50 million people suffer from epilepsy and 24 million from Alzheimer’s and other dementias. Because neuroscience takes the etiology of disease—the complex interplay between biological, psychological, and sociocultural factors—as its object of inquiry, it is increasingly valuable in understanding an array of medical conditions. A recent report by the United States’ Surgeon General cites several such diseases: schizophrenia, bipolar disorder, early-onset depression, autism, attention deficit/ hyperactivity disorder, anorexia nervosa, and panic disorder, among many others. Not only is this volume a boon to those wishing to understand the future of neuroscience, it also aims to encourage the initiation of neuroscience programs in developing countries, featuring as it does an appendix full of advice on how to develop such programs. With broad coverage of both basic science and clinical issues, comprising around 150 chapters from a diversity of international authors and including complementary video components, Neuroscience in the 21st Century in its second edition serves as a comprehensive resource to students and researchers alike.
Covering respiratory physiology, this is one in a series of texts which takes a fresh, unique approach to learning physiology in a systems-based curriculum. Each chapter includes clinical correlations, as well as questions that test students' ability to integrate information.
This book elucidates the morphological backgrounds of various functional parameters of the human respiratory system, including the respiratory control system, dynamics of the upper and lower airways, gas transport and mixing in the lower airways, gas exchange in the acinus, and gas transfer through the alveolar wall. Presenting the latest findings on the interrelationships between morphology and physiology in the respiratory system, the book’s goal is to provide a foundation for further exploring structure-function relationships in various respiratory systems, and to improve both the quality of basic science, and that of clinical medicine targeting the human respiratory system. Edited and written by internationally recognized experts, Structure-Function Relationships in Various Respiratory Systems offers a valuable asset for all physicians and researchers engaging in clinical, physiological, or morphological work in the field of respiration. Moreover, it provides a practical guide for physicians, helping them make more precise pathophysiological decisions concerning patients with various types of lung disease, and will be of interest to respiratory physiologists and respiratory morphologists.