Integrated Video-Frequency Continuous-Time Filters

Integrated Video-Frequency Continuous-Time Filters

Author: Scott D. Willingham

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 266

ISBN-13: 1461523478

DOWNLOAD EBOOK

Advances in the state of the art mean the signal processing ICs of ever-increasing complexity are being introduced. While the typical portion of a large IC devoted to analog circuits has diminished, the performance of those surviving analog signal processing circuits remains vital and their design challenging. Moreover, the emerging high-definition TV technology has created a new area for IC development, one with formidable signal processing requirements. The antialiasing filters needed for one proposed HDTV decoder motivated the research documented in this book. Sharply selective filters place tight constraints on the permitted excess phase shifts of their constituent circuits. Combined with stringent requirements for low distortion at video frequencies, these constraints challenge the IC filter designer. Integrated Video-Frequency Continuous-Time Filters: High-Performance Realizations in BiCMOS deals with what is arguably the mainstay of analog signal processing circuits. Prominent applications in computer disk-drive read channels, video receivers, rf circuits, and antialiasing and reconstruction in data converters testifies to their importance. Moreover, they are excellent benchmarks for more general analog signal processors. Bipolar and MOSFET transistors, freely combined at the lowest circuit levels, provide the designer with an opportunity to develop potent variations on the standard idioms. The book considers the general principles of BiCMOS circuit design, through to a demanding design problem. This case-study approach allows a concrete discussion of the justification for and practical trade-offs of each design decision. Audience: A reference work for experienced IC designers and a text for advanced IC design students.


High Frequency Continuous Time Filters in Digital CMOS Processes

High Frequency Continuous Time Filters in Digital CMOS Processes

Author: Shanthi Pavan

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 228

ISBN-13: 0306470144

DOWNLOAD EBOOK

There is an ever increasing trend towards putting entire systems on a single chip. This means that analog circuits will have to coexist on the same substrate along with massive digital systems. Since technologies are optimized with these digital systems in mind, designers will have to make do with standard CMOS processes in the years to come. We address analog filter design from this perspective. Filters form important blocks in applications ranging from computer disc-drive chips to radio transceivers. In this book, we develop the theory and techniques necessary for the implementation of high frequency (hundreds of megahertz) programmable continuous time filters in standard CMOS processes. Since high density poly-poly capacitors are not available in these technologies, alternative capacitor structures have to be found. Met- metal capacitors have low specific capacitance. An alternative is to use the (inherently nonlinear) capacitance formed by MOSFET gates. In Chapter 2, we focus on the use of MOS capacitors as integrating elements. A physics-based model which predicts distortion accurately is presented for a two-terminal MOS structure in accumulation. Distortion in these capacitors as a function of signal swing and bias voltage is computed. Chapter 3 reviews continuous-time filter architectures in the light of bias-dependent integrating capacitors. We also discuss the merits and demerits of various CMOS transconductance elements. The problems encountered in designing high frequency programmable filters are discussed in detail.


Top-Down Design of High-Performance Sigma-Delta Modulators

Top-Down Design of High-Performance Sigma-Delta Modulators

Author: Fernando Medeiro

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 303

ISBN-13: 1475730039

DOWNLOAD EBOOK

The interest for :I:~ modulation-based NO converters has significantly increased in the last years. The reason for that is twofold. On the one hand, unlike other converters that need accurate building blocks to obtain high res olution, :I:~ converters show low sensitivity to the imperfections of their building blocks. This is achieved through extensive use of digital signal pro cessing - a desirable feature regarding the implementation of NO interfaces in mainstream CMOS technologies which are better suited for implementing fast, dense, digital circuits than accurate analog circuits. On the other hand, the number of applications with industrial interest has also grown. In fact, starting from the earliest in the audio band, today we can find :I:~ converters in a large variety of NO interfaces, ranging from instrumentation to commu nications. These advances have been supported by a number of research works that have lead to a considerably large amount of published papers and books cov ering different sub-topics: from purely theoretical aspects to architecture and circuit optimization. However, so much material is often difficultly digested by those unexperienced designers who have been committed to developing a :I:~ converter, mainly because there is a lack of methodology. In our view, a clear methodology is necessary in :I:~ modulator design because all related tasks are rather hard.


Integrated Video-Frequency Continuous-Time Filters

Integrated Video-Frequency Continuous-Time Filters

Author: Scott D. Willingham

Publisher: Springer

Published: 2012-10-06

Total Pages: 249

ISBN-13: 9781461359951

DOWNLOAD EBOOK

Advances in the state of the art mean the signal processing ICs of ever-increasing complexity are being introduced. While the typical portion of a large IC devoted to analog circuits has diminished, the performance of those surviving analog signal processing circuits remains vital and their design challenging. Moreover, the emerging high-definition TV technology has created a new area for IC development, one with formidable signal processing requirements. The antialiasing filters needed for one proposed HDTV decoder motivated the research documented in this book. Sharply selective filters place tight constraints on the permitted excess phase shifts of their constituent circuits. Combined with stringent requirements for low distortion at video frequencies, these constraints challenge the IC filter designer. Integrated Video-Frequency Continuous-Time Filters: High-Performance Realizations in BiCMOS deals with what is arguably the mainstay of analog signal processing circuits. Prominent applications in computer disk-drive read channels, video receivers, rf circuits, and antialiasing and reconstruction in data converters testifies to their importance. Moreover, they are excellent benchmarks for more general analog signal processors. Bipolar and MOSFET transistors, freely combined at the lowest circuit levels, provide the designer with an opportunity to develop potent variations on the standard idioms. The book considers the general principles of BiCMOS circuit design, through to a demanding design problem. This case-study approach allows a concrete discussion of the justification for and practical trade-offs of each design decision. Audience: A reference work for experienced IC designers and a text for advanced IC design students.


Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers

Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers

Author: Klaas-Jan de Langen

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 258

ISBN-13: 1475729936

DOWNLOAD EBOOK

Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers discusses the design of integrated operational amplifiers that approach the limits of low supply voltage or very high bandwidth. The resulting realizations span the whole field of applications from micro-power CMOS VLSI amplifiers to 1-GHz bipolar amplifiers. The book presents efficient circuit topologies in order to combine high performance with simple solutions. In total twelve amplifier realizations are discussed. Two bipolar amplifiers are discussed, a 1-GHz operational amplifier and an amplifier with a high ratio between the maximum output current and the quiescent current. Five amplifiers have been designed in CMOS technology, extremely compact circuits that can operate on supply voltages down to one gate-source voltage and two saturation voltages which equals about 1.4 V and, ultimate-low-voltage amplifiers that can operate on supply voltages down to one gate-source voltage and one saturation voltage which amounts to about 1.2 V. In BiCMOS technology five amplifiers have been designed. The first two amplifiers are based on a compact topology. Two other amplifiers are designed to operate on low supply voltages down to 1.3 V. The final amplifier has a unity-gain frequency of 200 MHz and can operate down to 2.5 V. Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers is intended for the professional analog designer. Also, it is suitable as a text book for advanced courses in amplifier design.


Neuromorphic Systems Engineering

Neuromorphic Systems Engineering

Author: Tor Sverre Lande

Publisher: Springer

Published: 2007-08-26

Total Pages: 462

ISBN-13: 0585280010

DOWNLOAD EBOOK

Neuromorphic Systems Engineering: Neural Networks in Silicon emphasizes three important aspects of this exciting new research field. The term neuromorphic expresses relations to computational models found in biological neural systems, which are used as inspiration for building large electronic systems in silicon. By adequate engineering, these silicon systems are made useful to mankind. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the reader with a snapshot of neuromorphic engineering today. It is organized into five parts viewing state-of-the-art developments within neuromorphic engineering from different perspectives. Neuromorphic Systems Engineering: Neural Networks in Silicon provides the first collection of neuromorphic systems descriptions with firm foundations in silicon. Topics presented include: large scale analog systems in silicon neuromorphic silicon auditory (ear) and vision (eye) systems in silicon learning and adaptation in silicon merging biology and technology micropower analog circuit design analog memory analog interchipcommunication on digital buses £/LIST£ Neuromorphic Systems Engineering: Neural Networks in Silicon serves as an excellent resource for scientists, researchers and engineers in this emerging field, and may also be used as a text for advanced courses on the subject.


Design of Modulators for Oversampled Converters

Design of Modulators for Oversampled Converters

Author: Feng Wang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 162

ISBN-13: 1461554632

DOWNLOAD EBOOK

Oversampled A/D converters have become very popular in recent years. Some of their advantages include relaxed requirements for anti-alias filters, relaxed requirements for component matching, high resolution and compatibility with digital VLSI technology. There is a significant amount of literature discussing the principle, theory and implementation of various oversampled converters. Such converters are likely to continue to proliferate in the foreseeable future. Additionally, more recently there has been great interest in low voltage and low power circuit design. New design techniques have been proposed for both the digital domain and the analog domain. Both trends point to the importance of the low-power design of oversampled A/D converters. Unfortunately, there has been no systematic study of the optimal design of modulators for oversampled converters. Design has generally focused on new architectures with little attention being paid to optimization. The goal of Design of Modulators for Oversampled Converters is to develop a methodology for the optimal design of modulators in oversampled converters. The primary focus of the presentation is on minimizing power consumption and understanding and limiting the nonlinearities that result in such converters. Design of Modulators for Oversampled Converters offers a quantitative justification for the various design tradeoffs and serves as a guide for designing low-power highly linear oversampled converters. Design of Modulators for Oversampled Converters will serve as a valuable guide for circuit design practitioners, university researchers and graduate students who are interested in this fast-moving area.


Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters

Author: Vincenzo Peluso

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 178

ISBN-13: 1475729782

DOWNLOAD EBOOK

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of a systematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.


Design of High Frequency Integrated Analogue Filters

Design of High Frequency Integrated Analogue Filters

Author: Yichuang Sun

Publisher: IET

Published: 2002-04-15

Total Pages: 258

ISBN-13: 0852969767

DOWNLOAD EBOOK

Sun (communication electronics, U. of Hertfordshire, UK), this volume's editor, also contributed a chapter on the architectures and design of OTA/gm-C filters. The other papers describe on-chip automatic tuning of filters, analog adaptive filters, low voltage techniques for switched-current filters, log domain filters, the MOSFET-C technique and active filters using integrated inductors. The contributors teach electrical engineering in the US, the UK, Thailand, and Canada. Annotation copyrighted by Book News, Inc., Portland, OR


CMOS Wireless Transceiver Design

CMOS Wireless Transceiver Design

Author: Jan Crols

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 249

ISBN-13: 1475747845

DOWNLOAD EBOOK

The world of wireless communications is changing very rapidly since a few years. The introduction of digital data communication in combination with digital signal process ing has created the foundation for the development of many new wireless applications. High-quality digital wireless networks for voice communication with global and local coverage, like the GSM and DECT system, are only faint and early examples of the wide variety of wireless applications that will become available in the remainder of this decade. The new evolutions in wireless communications set new requirements for the trans ceivers (transmitter-receivers). Higher operating frequencies, a lower power consump tion and a very high degree of integration, are new specifications which ask for design approaches quite different from the classical RF design techniques. The integrata bility and power consumption reduction of the digital part will further improve with the continued downscaling of technologies. This is however completely different for the analog transceiver front-end, the part which performs the interfacing between the antenna and the digital signal processing. The analog front-end's integratability and power consumption are closely related to the physical limitations of the transceiver topology and not so much to the scaling of the used technology. Chapter 2 gives a detailed study of the level of integration in current transceiver realization and analyzes their limitations. In chapter 3 of this book the complex signal technique for the analysis and synthesis of multi-path receiver and transmitter topologies is introduced.