Integrated Frequency Synthesis for Convergent Wireless Solutions

Integrated Frequency Synthesis for Convergent Wireless Solutions

Author: Jad G. Atallah

Publisher: Springer Science & Business Media

Published: 2012-05-30

Total Pages: 197

ISBN-13: 1461414660

DOWNLOAD EBOOK

This book describes the design and implementation of an electronic subsystem called the frequency synthesizer, which is a very important building block for any wireless transceiver. The discussion includes several new techniques for the design of such a subsystem which include the usage modes of the wireless device, including its support for several leading-edge wireless standards. This new perspective for designing such a demanding subsystem is based on the fact that optimizing the performance of a complete system is not always achieved by optimizing the performance of its building blocks separately. This book provides “hands-on” examples of this sort of co-design of optimized subsystems, which can make the vision of an always-best-connected scenario a reality.


Integrated Frequency Synthesizers for Wireless Systems

Integrated Frequency Synthesizers for Wireless Systems

Author: Andrea Lacaita

Publisher:

Published: 2007

Total Pages: 239

ISBN-13: 9780511296000

DOWNLOAD EBOOK

The increasingly demanding performance requirements of communications systems, as well as problems posed by the continued scaling of silicon technology, present numerous challenges for the design of frequency synthesizers in modern transceivers. This book contains everything you need to know for the efficient design of frequency synthesizers for today's communications applications. If you need to optimize performance and minimize design time, you will find this book invaluable. Using an intuitive yet rigorous approach, the authors describe simple analytical methods for the design of phase locked loop (PLL) frequency synthesizers using scaled silicon CMOS and bipolar technologies. The entire design process, from system-level specification to layout, is covered comprehensively. Practical design examples are included, and implementation issues are addressed. A key problem-solving resource for practitioners in IC design, the book will also be of interest to researchers and graduate students in electrical engineering.


Integrated Frequency Synthesizers for Wireless Systems

Integrated Frequency Synthesizers for Wireless Systems

Author: Andrea Leonardo Lacaita

Publisher: Cambridge University Press

Published: 2007-06-28

Total Pages: 9

ISBN-13: 1139466097

DOWNLOAD EBOOK

The increasingly demanding performance requirements of communications systems, as well as problems posed by the continued scaling of silicon technology, present numerous challenges for the design of frequency synthesizers in modern transceivers. This book contains everything you need to know for the efficient design of frequency synthesizers for today's communications applications. If you need to optimize performance and minimize design time, you will find this book invaluable. Using an intuitive yet rigorous approach, the authors describe simple analytical methods for the design of phase locked loop (PLL) frequency synthesizers using scaled silicon CMOS and bipolar technologies. The entire design process, from system-level specification to layout, is covered comprehensively. Practical design examples are included, and implementation issues are addressed. A key problem-solving resource for practitioners in IC design, the book will also be of interest to researchers and graduate students in electrical engineering.


Design of Integrated Frequency Synthesizers and Clock-data Recovery for 60 GHz Wireless Communications

Design of Integrated Frequency Synthesizers and Clock-data Recovery for 60 GHz Wireless Communications

Author: Francesco Barale

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this dissertation, the development of the first 60 GHz-standard compatible fully integrated 4-channel phase-locked loop (PLL) frequency synthesizer has been presented. The frequency synthesizer features third-order single loop architecture with completely integrated passive loop filter that does not require any additional external passive component. Two possible realizations of fully integrated clock and data recovery (CDR) circuits suitable for 60 GHz-standard compliant base band signal processing have been presented for the first time as well. The two CDRs have been optimized for either high data rate (3.456 Gb/s) or very low power consumption (5 mW) and they both work with a single 1 V supply. : The frequency synthesizer is intended to generate a variable LO frequency in a fixed-IF heterodyne transceiver architecture. In such configuration the channel selection is implemented by changing the LO frequency by the required frequency step. This method avoids quadrature 50 GHz up/down-conversion thereby lowering the LO mixer design complexity and simplifying the LO distribution network. The measurement results show the PLL locking correctly on each of the four channels while consuming 60 mW from a 1 V power supply. The worst case phase noise is measured to be -80.1 dBc/Hz at 1 MHz offset from the highest frequency carrier (56.16 GHz). The output spectrum shows a reference spur attenuation of -32 dBc. The high data rate CDR features a maximum operating data rate in excess of 3.456 Gb/s while consuming 30 mW of power. The low power CDR consumes only 5 mW and operates at a maximum data rate of 1.728 Gb/s. Over a 1.5 m 60 GHz wireless link, both CDRs allow 95% reduction of the pulse shaping generated input peak-to-peak jitter from 450 ps down to 50 ps.


Fully-integrated DLL/PLL-based CMOS Frequency Synthesizers for Wireless Systems

Fully-integrated DLL/PLL-based CMOS Frequency Synthesizers for Wireless Systems

Author: Jaehyouk Choi

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A frequency synthesizer plays a critical role in defining the performance of wireless systems in terms of measures such as operating frequency range, settling time, phase noise and spur performance, and area/power consumption. As the trend in mobile system design has changed from single-standard systems to multi-standard/multi-application systems, the role of frequency synthesizers has become even more important. : As the most popular architecture, a phase-locked loop (PLL)-based frequency synthesizer has been researched over the last several decades; however, many unsolved problems related to the PLL-based synthesizer are still waiting for answers. This dissertation addresses key challenges related to fully integrated PLL-based frequency synthesizers, including the problem of large area consumption of passive components, the inherent reference-spur problem, and the problem of trade-offs between integer-N PLLs and fractional-N PLLs.


All-Digital Frequency Synthesizer in Deep-Submicron CMOS

All-Digital Frequency Synthesizer in Deep-Submicron CMOS

Author: Robert B. Staszewski

Publisher: Wiley-Interscience

Published: 2006-09-11

Total Pages: 261

ISBN-13: 9780471772552

DOWNLOAD EBOOK

A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.