High Performance Integrated Circuit Design

High Performance Integrated Circuit Design

Author: Emre Salman

Publisher: McGraw Hill Professional

Published: 2012-08-21

Total Pages: 738

ISBN-13: 0071635769

DOWNLOAD EBOOK

The latest techniques for designing robust, high performance integrated circuits in nanoscale technologies Focusing on a new technological paradigm, this practical guide describes the interconnect-centric design methodologies that are now the major focus of nanoscale integrated circuits (ICs). High Performance Integrated Circuit Design begins by discussing the dominant role of on-chip interconnects and provides an overview of technology scaling. The book goes on to cover data signaling, power management, synchronization, and substrate-aware design. Specific design constraints and methodologies unique to each type of interconnect are addressed. This comprehensive volume also explains the design of specialized circuits such as tapered buffers and repeaters for data signaling, voltage regulators for power management, and phase-locked loops for synchronization. This is an invaluable resource for students, researchers, and engineers working in the area of high performance ICs. Coverage includes: Technology scaling Interconnect modeling and extraction Signal propagation and delay analysis Interconnect coupling noise Global signaling Power generation Power distribution networks CAD of power networks Techniques to reduce power supply noise Power dissipation Synchronization theory and tradeoffs Synchronous system characteristics On-chip clock generation and distribution Substrate noise in mixed-signal ICs Techniques to reduce substrate noise


Application-Specific Integrated Circuits

Application-Specific Integrated Circuits

Author: Michael Smith

Publisher: Addison-Wesley Professional

Published: 1997-06-10

Total Pages: 0

ISBN-13: 9780321602756

DOWNLOAD EBOOK

This comprehensive book on application-specific integrated circuits (ASICs) describes the latest methods in VLSI-systems design. ASIC design, using commercial tools and pre-designed cell libraries, is the fastest, most cost-effective, and least error-prone method of IC design. As a consequence, ASICs and ASIC-design methods have become increasingly popular in industry for a wide range of applications. The book covers both semicustom and programmable ASIC types. After describing the fundamentals of digital logic design and the physical features of each ASIC type, the book turns to ASIC logic design - design entry, logic synthesis, simulation, and test - and then to physical design - partitioning, floorplanning, placement, and routing. You will find here, in practical well-explained detail, everything you need to know to understand the design of an ASIC, and everything you must do to begin and to complete your own design. Features Broad coverage includes, in one information-packed volume, cell-based ICs, gate arrays, field-programmable gate arrays (FPGAs), and complex programmable logic devices (PLDs). Examples throughout the book have been checked with a wide range of commercial tools to ensure their accuracy and utility. Separate chapters and appendixes on both Verilog and VHDL, including material from IEEE standards, serve as a complete reference for high-level, ASIC-design entry. As in other landmark VLSI books published by Addison-Wesley - from Mead and Conway to Weste and Eshraghian - the author's teaching expertise and industry experience illuminate the presentation of useful design methods. Any engineer, manager, or student who is working with ASICs in a design project, or who is simply interested in knowing more about the different ASIC types and design styles, will find this book to be an invaluable resource, reference, and guide.


Integrated Circuit Design for Radiation Environments

Integrated Circuit Design for Radiation Environments

Author: Stephen J. Gaul

Publisher: John Wiley & Sons

Published: 2019-12-03

Total Pages: 514

ISBN-13: 1118701852

DOWNLOAD EBOOK

A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.


Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design

Author: Vasilis F. Pavlidis

Publisher: Newnes

Published: 2017-07-04

Total Pages: 770

ISBN-13: 0124104843

DOWNLOAD EBOOK

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization


Analog Integrated Circuit Applications

Analog Integrated Circuit Applications

Author: J. Michael Jacob

Publisher:

Published: 2000

Total Pages: 600

ISBN-13:

DOWNLOAD EBOOK

This book takes full advantage of the latest advances in analog integrated circuits, computer-aided design, electronic publishing, and the World Wide Web's implications for publication support and distribution.Coverage opens with an introduction to the operational amplifier integrated circuit, then presents chapters on amplifiers and feedback; digital control of analog functions; power supplies and ic regulators; operational amplifier characteristics; layout and fabrication of analog circuits; single supply amplifiers; waveform generators; active filters; and nonlinear circuits.For practicing analog integrated circuit designers and anyone interested in applications and design with analog integrated circuits.


Integrated Circuit Test Engineering

Integrated Circuit Test Engineering

Author: Ian A. Grout

Publisher: Springer Science & Business Media

Published: 2005-08-22

Total Pages: 396

ISBN-13: 9781846280238

DOWNLOAD EBOOK

Using the book and the software provided with it, the reader can build his/her own tester arrangement to investigate key aspects of analog-, digital- and mixed system circuits Plan of attack based on traditional testing, circuit design and circuit manufacture allows the reader to appreciate a testing regime from the point of view of all the participating interests Worked examples based on theoretical bookwork, practical experimentation and simulation exercises teach the reader how to test circuits thoroughly and effectively


Digital Integrated Circuits

Digital Integrated Circuits

Author: John E. Ayers

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 468

ISBN-13: 1420069888

DOWNLOAD EBOOK

Exponential improvement in functionality and performance of digital integrated circuits has revolutionized the way we live and work. The continued scaling down of MOS transistors has broadened the scope of use for circuit technology to the point that texts on the topic are generally lacking after a few years. The second edition of Digital Integrated Circuits: Analysis and Design focuses on timeless principles with a modern interdisciplinary view that will serve integrated circuits engineers from all disciplines for years to come. Providing a revised instructional reference for engineers involved with Very Large Scale Integrated Circuit design and fabrication, this book delves into the dramatic advances in the field, including new applications and changes in the physics of operation made possible by relentless miniaturization. This book was conceived in the versatile spirit of the field to bridge a void that had existed between books on transistor electronics and those covering VLSI design and fabrication as a separate topic. Like the first edition, this volume is a crucial link for integrated circuit engineers and those studying the field, supplying the cross-disciplinary connections they require for guidance in more advanced work. For pedagogical reasons, the author uses SPICE level 1 computer simulation models but introduces BSIM models that are indispensable for VLSI design. This enables users to develop a strong and intuitive sense of device and circuit design by drawing direct connections between the hand analysis and the SPICE models. With four new chapters, more than 200 new illustrations, numerous worked examples, case studies, and support provided on a dynamic website, this text significantly expands concepts presented in the first edition.


Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design

Author: Yuan Xie

Publisher: Springer Science & Business Media

Published: 2009-12-02

Total Pages: 292

ISBN-13: 144190784X

DOWNLOAD EBOOK

We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore’s law. This observation stated that transistor density in integrated circuits doubles every 1. 5–2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore’s law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).


CMOS Digital Integrated Circuits

CMOS Digital Integrated Circuits

Author: Sung-Mo Kang

Publisher:

Published: 2002

Total Pages: 655

ISBN-13: 9780071243421

DOWNLOAD EBOOK

The fourth edition of CMOS Digital Integrated Circuits: Analysis and Design continues the well-established tradition of the earlier editions by offering the most comprehensive coverage of digital CMOS circuit design, as well as addressing state-of-the-art technology issues highlighted by the widespread use of nanometer-scale CMOS technologies. In this latest edition, virtually all chapters have been re-written, the transistor model equations and device parameters have been revised to reflect the sigificant changes that must be taken into account for new technology generations, and the material has been reinforced with up-to-date examples. The broad-ranging coverage of this textbook starts with the fundamentals of CMOS process technology, and continues with MOS transistor models, basic CMOS gates, interconnect effects, dynamic circuits, memory circuits, arithmetic building blocks, clock and I/O circuits, low power design techniques, design for manufacturability and design for testability.


Integrated Circuits for Wireless Communications

Integrated Circuits for Wireless Communications

Author: Asad A. Abidi

Publisher: Wiley-IEEE Press

Published: 1999

Total Pages: 696

ISBN-13:

DOWNLOAD EBOOK

Electrical Engineering Integrated Circuits for Wireless Communications High-frequency integrated circuit design is a booming area of growth that is driven not only by the expanding capabilities of underlying circuit technologies like CMOS, but also by the dramatic increase in wireless communications products that depend on them. Integrated Circuits for Wireless Communications includes seminal and classic papers in the field and is the first all-in-one resource to address this increasingly important topic. Internationally known and highly regarded in the field, editors Asad Abidi, Paul Gray, and Robert G. Meyer have meticulously compiled more than 100 papers and articles covering the very latest high-level integrated circuits techniques and solutions in use today. Integrated Circuits for Wireless Communications is devised expressly to provide IC design engineers, system architects, and integrators with a practical understanding of subjects ranging from architecture choices for integrated transceivers to actual circuit designs in all viable IC technologies, such as bipolar, CMOS, and GaAs. The papers selected represent a breadth of coverage and level of expertise that is simply unmatched in the field. Topics covered include: Radio architectures Receivers Transmitters and transceivers Power amplifiers and RF switches Oscillators Passive components Systems applications