Dynamic Inequalities On Time Scales

Dynamic Inequalities On Time Scales

Author: Ravi Agarwal

Publisher: Springer

Published: 2014-10-30

Total Pages: 264

ISBN-13: 3319110020

DOWNLOAD EBOOK

This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.


Integral Inequalities on Time Scales

Integral Inequalities on Time Scales

Author: Svetlin G. Georgiev

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-08-24

Total Pages: 316

ISBN-13: 3110705559

DOWNLOAD EBOOK

This book is devoted to recent developments of linear and nonlinear integral inequalities on time scales. The book is intended for the use in the field of dynamic calculus on time scales, dynamic equation and integral equations on time scales. It is also suitable for graduate courses in the above fields. The book is designed for those who have mathematical background on time scales calculus.


Inequalities for Differential and Integral Equations

Inequalities for Differential and Integral Equations

Author:

Publisher: Elsevier

Published: 1997-11-12

Total Pages: 623

ISBN-13: 0080534643

DOWNLOAD EBOOK

Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course. - Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations - Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books - Provides a valuable reference to engineers and graduate students


Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

Published: 2016-09-22

Total Pages: 233

ISBN-13: 3319422138

DOWNLOAD EBOOK

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.


Dynamic Equations on Time Scales

Dynamic Equations on Time Scales

Author: Martin Bohner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 365

ISBN-13: 1461202019

DOWNLOAD EBOOK

On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.


Hardy Type Inequalities on Time Scales

Hardy Type Inequalities on Time Scales

Author: Ravi P. Agarwal

Publisher: Springer

Published: 2016-10-20

Total Pages: 309

ISBN-13: 3319442996

DOWNLOAD EBOOK

The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.


Advances On Fractional Dynamic Inequalities On Time Scales

Advances On Fractional Dynamic Inequalities On Time Scales

Author: Svetlin G Georgiev

Publisher: World Scientific

Published: 2023-08-29

Total Pages: 337

ISBN-13: 9811275483

DOWNLOAD EBOOK

This book is devoted on recent developments of linear and nonlinear fractional Riemann-Liouville and Caputo integral inequalities on time scales. The book is intended for the use in the field of fractional dynamic calculus on time scales and fractional dynamic equations on time scales. It is also suitable for graduate courses in the above fields, and contains ten chapters. The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics as well as solution techniques. The text material of this book is presented in a readable and mathematically solid format.


Conformable Dynamic Equations on Time Scales

Conformable Dynamic Equations on Time Scales

Author: Douglas R. Anderson

Publisher: CRC Press

Published: 2020-08-29

Total Pages: 347

ISBN-13: 100009393X

DOWNLOAD EBOOK

The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.


Multivariable Dynamic Calculus on Time Scales

Multivariable Dynamic Calculus on Time Scales

Author: Martin Bohner

Publisher: Springer

Published: 2017-03-20

Total Pages: 608

ISBN-13: 3319476203

DOWNLOAD EBOOK

This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.


Frontiers in Time Scales and Inequalities

Frontiers in Time Scales and Inequalities

Author: George A. Anastassiou

Publisher: World Scientific Publishing Company

Published: 2016

Total Pages: 278

ISBN-13: 9789814704434

DOWNLOAD EBOOK

This monograph contains the author's work of the last four years in discrete and fractional analysis. It introduces the right delta and right nabla fractional calculus on time scales and continues with the right delta and right nabla discrete fractional calculus in the Caputo sense. Then, it shows representation formulae of functions on time scales and presents Ostrowski type inequalities, Landau type inequalities, Grüss type and comparison of means inequalities, all these over time scales. The volume continues with integral operator inequalities and their multivariate vectorial versions using convexity of functions, again all these over time scales. It follows the Grüss and Ostrowski type inequalities involving s-convexity of functions; and also examines the general case when several functions are involved. Then, it presents the general fractional Hermite-Hadamard type inequalities using m-convexity and (s, m)-convexity. Finally, it introduces the reduction method in fractional calculus and its connection to fractional Ostrowski type inequalities is studied.This book's results are expected to find applications in many areas of pure and applied mathematics, especially in difference equations and fractional differential equations. The chapters are self-contained and can be read independently, and advanced courses can be taught out of it. It is suitable for researchers, graduate students, seminars of the above subjects, and serves well as an invaluable resource for all science libraries.