Integrable Systems of Classical Mechanics and Lie Algebras Volume I

Integrable Systems of Classical Mechanics and Lie Algebras Volume I

Author: PERELOMOV

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 312

ISBN-13: 3034892578

DOWNLOAD EBOOK

This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.


Integrable Systems of Classical Mechanics and Lie Algebras

Integrable Systems of Classical Mechanics and Lie Algebras

Author: A. M. Perelomov

Publisher: Springer

Published: 1990

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.


Lectures on Integrable Systems

Lectures on Integrable Systems

Author: Jens Hoppe

Publisher: Springer Science & Business Media

Published: 2008-09-15

Total Pages: 109

ISBN-13: 3540472746

DOWNLOAD EBOOK

Mainly drawing on explicit examples, the author introduces the reader to themost recent techniques to study finite and infinite dynamical systems. Without any knowledge of differential geometry or lie groups theory the student can follow in a series of case studies the most recent developments. r-matrices for Calogero-Moser systems and Toda lattices are derived. Lax pairs for nontrivial infinite dimensionalsystems are constructed as limits of classical matrix algebras. The reader will find explanations of the approach to integrable field theories, to spectral transform methods and to solitons. New methods are proposed, thus helping students not only to understand established techniques but also to interest them in modern research on dynamical systems.


Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 524

ISBN-13: 1468402749

DOWNLOAD EBOOK

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.


Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Author: D.H. Sattinger

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 218

ISBN-13: 1475719108

DOWNLOAD EBOOK

This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.


Integrable Systems in the realm of Algebraic Geometry

Integrable Systems in the realm of Algebraic Geometry

Author: Pol Vanhaecke

Publisher: Springer

Published: 2013-11-11

Total Pages: 226

ISBN-13: 3662215357

DOWNLOAD EBOOK

Integrable systems are related to algebraic geometry in many different ways. This book deals with some aspects of this relation, the main focus being on the algebraic geometry of the level manifolds of integrable systems and the construction of integrable systems, starting from algebraic geometric data. For a rigorous account of these matters, integrable systems are defined on affine algebraic varieties rather than on smooth manifolds. The exposition is self-contained and is accessible at the graduate level; in particular, prior knowledge of integrable systems is not assumed.


Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces

Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces

Author: Alexey V. Shchepetilov

Publisher: Springer

Published: 2006-09-04

Total Pages: 267

ISBN-13: 3540353860

DOWNLOAD EBOOK

This is an introduction to classical and quantum mechanics on two-point homogenous Riemannian spaces, empahsizing spaces with constant curvature. Chapters 1-4 provide basic notations for studying two-body dynamics. Chapter 5 deals with the problem of finding explicitly invariant expressions for the two-body quantum Hamiltonian. Chapter 6 addresses one-body problems in a central potential. Chapter 7 investigates the classical counterpart of the quantum system introduced in Chapter 5. Chapter 8 discusses applications in the quantum realm.


Encyclopedia of Nonlinear Science

Encyclopedia of Nonlinear Science

Author: Alwyn Scott

Publisher: Routledge

Published: 2006-05-17

Total Pages: 1107

ISBN-13: 1135455589

DOWNLOAD EBOOK

In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.