What Is Integrability?

What Is Integrability?

Author: Vladimir E. Zakharov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 339

ISBN-13: 3642887031

DOWNLOAD EBOOK

The idea of devoting a complete book to this topic was born at one of the Workshops on Nonlinear and Turbulent Processes in Physics taking place reg ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other's work. Yet it seemed to be somewhat of a discovery that all of them were and are trying to understand the same problem - the problem of integrability of dynamical systems, primarily Hamiltonian ones with an infinite number of degrees of freedom. No doubt that they (or to be more exact, we) were led to this by the logical process of scientific evolution which often leads to independent, almost simultaneous discoveries. Integrable, or, more accurately, exactly solvable equations are essential to theoretical and mathematical physics. One could say that they constitute the "mathematical nucleus" of theoretical physics whose goal is to describe real clas sical or quantum systems. For example, the kinetic gas theory may be considered to be a theory of a system which is trivially integrable: the system of classical noninteracting particles. One of the main tasks of quantum electrodynamics is the development of a theory of an integrable perturbed quantum system, namely, noninteracting electromagnetic and electron-positron fields.


Integrability of Nonlinear Systems

Integrability of Nonlinear Systems

Author: Yvette Kosmann-Schwarzbach

Publisher: Springer Science & Business Media

Published: 2004-02-17

Total Pages: 358

ISBN-13: 9783540206309

DOWNLOAD EBOOK

The lectures that comprise this volume constitute a comprehensive survey of the many and various aspects of integrable dynamical systems. The present edition is a streamlined, revised and updated version of a 1997 set of notes that was published as Lecture Notes in Physics, Volume 495. This volume will be complemented by a companion book dedicated to discrete integrable systems. Both volumes address primarily graduate students and nonspecialist researchers but will also benefit lecturers looking for suitable material for advanced courses and researchers interested in specific topics.


Introduction to Classical Integrable Systems

Introduction to Classical Integrable Systems

Author: Olivier Babelon

Publisher: Cambridge University Press

Published: 2003-04-17

Total Pages: 622

ISBN-13: 9780521822671

DOWNLOAD EBOOK

This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.


Integrability

Integrability

Author: Alexander Mikhailov

Publisher: Springer

Published: 2008-11-05

Total Pages: 348

ISBN-13: 3540881115

DOWNLOAD EBOOK

The principal aim of the book is to give a comprehensive account of the variety of approaches to such an important and complex concept as Integrability. Dev- oping mathematical models, physicists often raise the following questions: whether the model obtained is integrable or close in some sense to an integrable one and whether it can be studied in depth analytically. In this book we have tried to c- ate a mathematical framework to address these issues, and we give descriptions of methods and review results. In the Introduction we give a historical account of the birth and development of the theory of integrable equations, focusing on the main issue of the book – the concept of integrability itself. A universal de nition of Integrability is proving to be elusive despite more than 40 years of its development. Often such notions as “- act solvability” or “regular behaviour” of solutions are associated with integrable systems. Unfortunately these notions do not lead to any rigorous mathematical d- inition. A constructive approach could be based upon the study of hidden and rich algebraic or analytic structures associated with integrable equations. The requi- ment of existence of elements of these structures could, in principle, be taken as a de nition for integrability. It is astonishing that the nal result is not sensitive to the choice of the structure taken; eventually we arrive at the same pattern of eq- tions.


Integrability, Quantization, and Geometry: I. Integrable Systems

Integrability, Quantization, and Geometry: I. Integrable Systems

Author: Sergey Novikov

Publisher: American Mathematical Soc.

Published: 2021-04-12

Total Pages: 516

ISBN-13: 1470455919

DOWNLOAD EBOOK

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.


Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems

Author: Gleb Arutyunov

Publisher: Springer

Published: 2019-07-23

Total Pages: 420

ISBN-13: 303024198X

DOWNLOAD EBOOK

Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.


Integrability and Nonintegrability of Dynamical Systems

Integrability and Nonintegrability of Dynamical Systems

Author: Alain Goriely

Publisher: World Scientific

Published: 2001

Total Pages: 435

ISBN-13: 981023533X

DOWNLOAD EBOOK

This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space.


Discrete Systems and Integrability

Discrete Systems and Integrability

Author: J. Hietarinta

Publisher: Cambridge University Press

Published: 2016-09

Total Pages: 461

ISBN-13: 1107042720

DOWNLOAD EBOOK

A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.


Integrability of Dynamical Systems: Algebra and Analysis

Integrability of Dynamical Systems: Algebra and Analysis

Author: Xiang Zhang

Publisher: Springer

Published: 2017-03-30

Total Pages: 390

ISBN-13: 9811042268

DOWNLOAD EBOOK

This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.


An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

Author: Fabio Franchini

Publisher: Springer

Published: 2017-05-25

Total Pages: 186

ISBN-13: 3319484877

DOWNLOAD EBOOK

This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.